• Title/Summary/Keyword: network society

Search Result 26,841, Processing Time 0.049 seconds

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

The Impact of Self-efficacy on Job Engagement and Job Performance of SMEs' Members: SEM-ANN Analysis (중소기업 조직구성원의 자기효능감이 직무열의와 직무성과에 미치는 영향: 구조모형분석-인공신경망 분석의 적용)

  • Kang, Tae-Won;Lee, Yong-Ki;Lee, Yong-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.155-166
    • /
    • 2018
  • The purpose of this study is to analyze the impact of self-efficacy of SMEs' organization members on job engagement and job performance, and to analyze the difference between gender and marital status by applying SEM-ANN analysis. To accomplish the study purpose, 285 valid samples were collected from 400 SMEs' organization members and analyzed. In this study, self - efficacy consisted of three sub-dimensions: self-confidence, self-regulation efficacy, and task difficulty preference. As a result of the analysis, self - efficacy such as self-confidence, self-regulation efficacy, and task difficulty preference had a positive direct effect on job engagement. In addition, self-efficacy and self-control efficacy have a positive effect on job performance, but the preference of task difficulty has no significant effect. In addition, job engagement has a positive(+) effect on job performance, and has a mediating role in the relationship between self-efficacy and job performance. Also, married males preferred self-regulation efficacy, while females preferred self-regulation and self-control efficacy regardless of marital status. The purpose of this study is to present the framework of self-efficacy-job engagement-job performance of SMEs by measuring the self-efficacy related researches mainly in education and service industries, and is meaningful that companies can help to find the basis of management of organization members by gender and marital status of organization members. In addition, the SEM-ANN analysis process of this study is different in that it explains the nonlinear (nonobservative) relationship that can analyze the influence or the combination of the reference variables in the linear (compensatory) relation using the SEM.

Transition of the Views on the Mudang Gut Chum (shamanistic dance) (무당굿춤을 바라보는 시각의 전환 - 서울굿과 황해도굿을 중심으로 -)

  • Hong, Tea-Han
    • (The) Research of the performance art and culture
    • /
    • no.37
    • /
    • pp.33-60
    • /
    • 2018
  • This article is to present that the research on the Mudang Gut Chum should be within the context of the performance of Mudang Gut and examines its meanings and implications with focus on Seoul Mudang Gut Chum and Hwanghae-do Mudang Gut Chum. Seoul and Hwanghae-do Mudang Gut Chums do not exist in the form of simple dance or movement. They feature continuity while serving the function of revealing the existence of spirit and sometimes show the process of the spirit joining the Gut ritual, which means that the Mudang Gut Chum should not be understood as the dance itself only. Instead, care attention should be paid to the status of the tune of Gut where the dance is placed, relationship between the gut and the spirit, and the flow of narrativity. Also, the Mudang Gut Chum has a lot to do with the tune. Looking at the Mudang Gut Chum simply focusing on dancing steps, and the movement of feet and/or hands fails to gain an accurate understanding of the fundamentals of the Mudang Gut Chum. Closely connected to the tune, which is also associated with the grade of the spirit, the dance shows a variety of performances conducted by entering the Gut ritual of the spirit. In that respect, complex views on the Mudang Gut Chum are required. The same applies to the hereditary shaman Mudang Gut as well. The Korean Mudang Gut Chum has a slight difference between the Gangshinmu gut and the hereditary gut but is in basically the same aspect. The Gut Chum holds its meaning in the flow of gutgeori (tune or dance performed during exorcism, a shaman song) and delivers its own meaning in connection with the tune. It is definitely meaningful to focus on the individual movements of a dancing shaman but one should be able to derive the network of meanings that such movements have within the performance of the gutgeori, which means that intensive studies on the field performance and circumstances should be completed before studying the Mudang Gut Chum. In addition, the Mudang Gut Chum discloses the characteristics of the performance group. The Mudang Gut Chum exists in a complex manner. With respects to the status of the spirit, it shows the characteristics of the performance group. It represents the progress of Gut while closely connected with the tune. Therefore, the way of describing the Mudang Gut Chum should be far more than just simply keeping the dance notations. With this in mind, one should investigate and record the Mudang Gut Chum.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

A Study on Usability of Open Source Software for Developing Records System : A Case of ICA AtoM (공개 소프트웨어를 이용한 기록시스템 구축가능성 연구 ICA AtoM을 중심으로)

  • Lee, Bo-Ram;Hwang, Jin-Hyun;Park, Min-Yung;Kim, Hyung-Hee;Choi, Dong-Woon;Choi, Yun-Jin;Yim, Jin-Hee
    • The Korean Journal of Archival Studies
    • /
    • no.39
    • /
    • pp.193-228
    • /
    • 2014
  • In recent years, as well as management of public records, interest in the private archive of large and small is growing. Dedicated archive has various types. In addition, lack of personnel and budget, personnel records management professional because the absence, that help you maintain these records in a systematic manner is not easy. Request to the system have continued to rise, but the budget and professionals in order to solve this problem are missing. As breakthrough of the burden to the system with archive dedicated, it introduces the trends and meaning of public recording system, and was examined in detail AtoM function. AtoM is public land can be made by a method that requires a Web service, the database server. Without restrictions, including the advantage of being available free of charge, by the application or operating system specific, installation and operation is convenient. In addition, compatibility, and is highly scalable, AtoM use and convenient archive of private experiencing a shortage of personnel and budget. Because in terms of data management, and excellent interoperability and search share, and use, it is possible in the future, it favors also documentary use through a network of inter-agency archives and private. In addition, Enhancements exhibition services through cooperation with Omeka, long-term storage through Archivematica, many discussion is needed. Public centered around the private area of the recording management spilling expanded, open-source software allows to balance the recording system will be able to play an important role. In addition, the efforts of academia and in the field, close collaboration between the open source recording system through a user study should be continued. Furthermore, co-operation and sharing of private archives expect come true.

The Effective Approach for Non-Point Source Management (효과적인 비점오염원관리를 위한 접근 방향)

  • Park, Jae Hong;Ryu, Jichul;Shin, Dong Seok;Lee, Jae Kwan
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • In order to manage non-point sources, the paradigm of the system should be changed so that the management of non-point sources will be systematized from the beginning of the use and development of the land. It is necessary to change the method of national subsidy support and poeration plan for the non-point source management area. In order to increase the effectiveness of the non-point source reduction project, it is necessary to provide a minimum support ratio and to provide additional support according to the performance of the local government. A new system should be established to evaluate the performance of non-point source reduction projects and to monitor the operational effectiveness. It is necessary to establish the related rules that can lead the local government to take responsible administration so that the local governments faithfully carry out the non-point source reduction project and achieve the planned achievement and become the sustainable maintenance. Alternative solutions are needed, such as problems with the use of $100{\mu}m$ filter in automatic sampling and analysis, timely acquisition of water sampling and analysis during rainfall, and effective management of non-point sources network operation management. As an alternative, it is necessary to consider improving the performance of sampling and analysis equipment, and operate the base station. In addition, countermeasures are needed if the amount of pollutant reduction according to the non-point source reduction facility promoted by the national subsidy is required to be used as the development load of the TMDLs. As an alternative, it is possible to consider supporting incentive type of part of the maintenance cost of the non-point source reduction facility depending on the amount of pollutants reduction.

The Effects on the Performance of High-tech Startups by the Entrepreneurial Competency (기술창업기업의 기업가 역량이 기업성과에 미치는 영향)

  • Um, Hyeon Jeong;Yang, Young Seok;Kim, Myung Seuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.2
    • /
    • pp.19-34
    • /
    • 2021
  • The government budget for promoting startup have been skyrocketed as catching up with increasing demands for high-tech startup by disruptive innovation resulted from rapid technology change. However, major trend of startup have still fallen on self-employed type of startup due to the lack of expertise and fund in spite of desperate government policy efforts. In reality, the access to high-tech startup has been very limited and too high huddle to would-be entrepreneur. This paper implement empirical analysis on the effects of entrepreneur competency and satisfaction level to government support, considering these as the KSF for the growth and success of high-tech startup, to the performance of the company. In particular, it focus on defining unique characteristics of high-tech startup through differential proving by the backgrounds of entrepreneur such as major, R&D experience, patent possession, CTO possession. This research carry out survey to 217 entrepreneurs in high-tech company in Daejon and Daegue at R&D Special Innopolis Zone. Research results are as follow. First, entrepreneurial achievement competencies, conceptualization competencies, network competencies and market recognition competencies positively affect the financial and non-financial performance and organizational and technical competencies, while organizational and technological competencies only positively impact on non-financial performance. Second, the satisfaction level of government support showed a positive moderating effect on entrepreneurial achievement competencies and financial performance, while no significant effect in other competencies. Third, positive differential effect by the technological background of entrepreneur such as Major, R&D experience, patent possession, CTO possession) have been confirmed. This paper deliver several significant implications and contributions, First, it propose classified and systematized entrepreneur competency through the domestic and foreign literature reviews. Second, it proves the need for the wider spread of team based startup culture rather then sole startup. Third, it also proves the important role of technological background of entrepreneur among the characteristics of high-tech startup.

Using Transportation Card Data to Analyze City Bus Use in the Ulsan Metropolitan City Area (교통카드를 활용한 시내버스의 현황 분석에 관한 연구 - 울산광역시 사례를 중심으로 -)

  • Choi, Yang-won;Kim, Ik-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.603-611
    • /
    • 2020
  • This study collected and analyzed transportation card data in order to better understand the operation and usage of city buses in Ulsan Metropolitan City in Korea. The analysis used quantitative and qualitative indicators according to the characteristics of the data, and also the categories were classified as general status, operational status, and satisfaction. The existing city bus survey method has limitations in terms of survey scale and in the survey process itself, which incurs various types of errors as well as requiring a lot of time and money to conduct. In particular, the bus means indicators calculated using transportation card data were analyzed to compensate for the shortcomings of the existing operational status survey methods that rely entirely on site surveys. The city bus index calculated by using the transportation card data involves quantitative operation status data related to the user, and this results in the advantage of being able to conduct a complete survey without any data loss in the data collection process. We took the transportation card data from the entire city bus network of Ulsan Metropolitan City on Wednesday April 3, 2019. The data included information about passenger numbers/types, bus types, bus stops, branches, bus operators, transfer information, and so on. From the data analysis, it was found that a total of 234,477 people used the city bus on the one day, of whom 88.6% were adults and 11.4% were students. In addition, the stop with the most passengers boarding and alighting was Industrial Tower (10,861 people), A total of 20,909 passengers got on and off during the peak evening period of 5 PM to 7 PM, and 13,903 passengers got on and off the No. 401 bus route. In addition, the top 26 routes in terms of the highest number of passengers occupied 50% of the total passengers, and the top five bus companies carried more than 70% of passengers, while 62.46% of the total routes carried less than 500 passengers per day. Overall, it can be said that this study has great significance in that it confirmed the possibility of replacing the existing survey method by analyzing city bus use by using transportation card data for Ulsan Metropolitan City. However, due to limitations in the collection of available data, analysis was performed only on one matched data, attempts to analyze time series data were not made, and the scope of analysis was limited because of not considering a methodology for efficiently analyzing large amounts of real-time data.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Estimation of the Lodging Area in Rice Using Deep Learning (딥러닝을 이용한 벼 도복 면적 추정)

  • Ban, Ho-Young;Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • Rice lodging is an annual occurrence caused by typhoons accompanied by strong winds and strong rainfall, resulting in damage relating to pre-harvest sprouting during the ripening period. Thus, rapid estimations of the area of lodged rice are necessary to enable timely responses to damage. To this end, we obtained images related to rice lodging using a drone in Gimje, Buan, and Gunsan, which were converted to 128 × 128 pixels images. A convolutional neural network (CNN) model, a deep learning model based on these images, was used to predict rice lodging, which was classified into two types (lodging and non-lodging), and the images were divided in a 8:2 ratio into a training set and a validation set. The CNN model was layered and trained using three optimizers (Adam, Rmsprop, and SGD). The area of rice lodging was evaluated for the three fields using the obtained data, with the exception of the training set and validation set. The images were combined to give composites images of the entire fields using Metashape, and these images were divided into 128 × 128 pixels. Lodging in the divided images was predicted using the trained CNN model, and the extent of lodging was calculated by multiplying the ratio of the total number of field images by the number of lodging images by the area of the entire field. The results for the training and validation sets showed that accuracy increased with a progression in learning and eventually reached a level greater than 0.919. The results obtained for each of the three fields showed high accuracy with respect to all optimizers, among which, Adam showed the highest accuracy (normalized root mean square error: 2.73%). On the basis of the findings of this study, it is anticipated that the area of lodged rice can be rapidly predicted using deep learning.