• 제목/요약/키워드: network selection algorithm

검색결과 580건 처리시간 0.028초

TVWS에서 스펙트럼 에티켓 및 GA를 사용한 WRAN과 WLAN의 효율적 주파수 공유기법 (An Effective Frequency Sharing Method using Spectrum Etiquette and Genetic Algorithm for the Coexistence of WRAN and WLAN in TV White Space)

  • 정원식;장성진;용슬바로;김재명
    • 한국통신학회논문지
    • /
    • 제37권2A호
    • /
    • pp.83-94
    • /
    • 2012
  • TV 화이트 스페이스(TV White Space, TVWS)에서는 WRAN, WLAN과 같은 다양한 이종 통신 기기들이 공존하게 되기 때문에 TV 화이트 스페이스 주파수 대역을 공유하는 무선 장치들은 주파수 사용 면허를 가진 TV, 무선 마이크와 같은 면허사용자(Incumbent)에 대한 간섭제어 기술 이외에도 주파수를 공유하는 동종 또는 이종의 비면허 무선 네트워크에 대한 상호공존 기술이 요구된다. 본 논문에서는 WLAN 사용자에게 더 많은 대역폭을 제공할 수 있는 WRAN 스펙트럼 에티켓 기법 및 유전자 알고리즘을 사용한 WLAN 주파수 선택기법, 이렇게 두가지 상호공존 기법을 제안한다. 또한 이를 적용한 시뮬레이션 결과를 통하여 두 가지 상호공존 기법을 통해 두 이종 시스템 상호간의 간섭을 줄이고 throughput 성능을 향상시킬 수 있음을 보인다.

생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구 (A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company)

  • 이용구;허준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권1호
    • /
    • pp.179-190
    • /
    • 2009
  • 금융 산업에서, 의사결정나무 분석은 분류분석을 위해서 널리 사용되는 분석기법이다. 그러나 금융 산업에서 실제로 의사결정나무 분석을 적용할 때, 발생하는 문제점 중 하나는 설명변수의 수가 너무 많다는 점이다. 따라서 모형의 결과에 별 영향을 미치지 않으면서 설명변수의 수를 줄이는 효과적인 방법을 연구할 필요가 있다. 본 연구에서는 의사결정 나무 분석에서 모형의 정확성에 근거한 최선의 변수 선택 방법을 구하기 위하여 다양한 변수 선택방법들을 비교 분석 하였다. 이를 위하여 본 연구에서는 한 보험회사의 연금 보험 상품 자료에 다양한 설명변수 축소방법을 적용하여, 가장 적은 수의 설명변수를 가지고 가장 높은 정확도를 제공하여 주는 설명변수 축소방법을 구하는 실증적인 연구를 시행하였다. 이러한 실험결과, 신경망의 민감도 분석을 이용하여 변수를 축소하고, 그 축소된 변수를 이용하여 의사결정나무 분석 모델을 생성하는 경우가 가장 효율적인 설명변수 축소방법임을 알 수 있었다.

  • PDF

데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구 (An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining)

  • 김미희;오하영;채기준
    • 한국통신학회논문지
    • /
    • 제31권2C호
    • /
    • pp.208-218
    • /
    • 2006
  • 본 논문에서는 최신의 공격 유형을 잘 분류해 내고, 기존 공격의 변형이나 새로운 공격에도 탐지 가능하도록 데이터 마이닝 기법을 이용한 공격 탐지 모델 생성 방법들을 소개하고, 다양한 실험을 통해 탐지율 및 탐지 시간 측면에서 이 모델들의 성능을 비교한다. 이러한 탐지 모델을 생성하는데 중요한 요소로 데이터, 속성, 탐지 알고리즘을 꼽을 수 있는데, 실제 네트워크에서 수집된 NetFlow 데이터와 대량의 KDD Cup 1999 데이터를 사용하였다. 또한 탐지 알고리즘으로서 단일 지도/비지도학습 데이터 마이닝 기법 및 결합된 방법을 이용하여 탐지 모델을 생성, 비교 실험하였다. 시험 결과, 결합된 지도학습 알고리즘을 사용한 경우 모델링 시간은 길었지만 가장 탐지율이 높았고, 모든 경우 탐지 시간이 1초 내외로 실시간 탐지 가능성을 입증할 수 있었다. 또한 새로운 공격에 대한 이상탐지 결과로도 92$\%$ 이상의 탐지율을 보임으로 탐지 가능성을 입증할 수 있었고, SOM 기법을 사용하는 경우에는 새로운 공격이 기존 어느 공격에 유사한 특성을 갖는지에 대한 부과적인 정보도 제공하였다.

버스 노선망 설계 문제(BTRNDP)의 고찰 (Reviews of Bus Transit Route Network Design Problem)

  • 한종학;이승재;임성수;김종형
    • 대한교통학회지
    • /
    • 제23권3호
    • /
    • pp.35-47
    • /
    • 2005
  • 버스 대중교통은 정해진 노선, 운행시간표에 의해 정류장을 경유하여 운행하므로 버스 노선망 설계 문제(BTRNDP: Bus Transit Route Network Design Problem)는 승용차위주의 가로망 설계 문제와 다른 접근방법이 요구된다. 버스 노선망 설계 문제의 적용모형은 설계방법의 역사적발전과정에 따라 매뉴얼 및 지침, 시장분석기법, 시스템해석모형, 휴리스틱모형, 하이브리드모형, 경험기반모형, 시뮬레이션모형, 수리최적화모형 등 크게 8가지 분류할 수 있다. BTRNDP는 이용자비용과 운영자비용의 조합인 총비용을 최소화하는 목적함수를 획득하기 위한 일련의 현실적 제약조건하에서 버스노선집합과 배차횟수를 결정하는 문제이다. BTRNDP는 조합최적화문제로 일반적 수리최적화문제로 가능해 공간을 정의하는 것이 어렵기 때문에 모든 가능해로 구성된 큰 탐색공간으로부터 최적해를 탐색해야하는 NP-Hard라는 특성을 가진다. BTRNDP의 목적함수는 이용자와 운영자관점을 모두 고려한 다목적함수(Multi-Objective Function)를 이용하며 수요는 고정수요를 이용하였으나 최근에는 가변수요를 고려한 방법론이 연구되고 있다. 해알고리즘으로 최적 버스 노선망을 구성하게 될 모든 가능한 후보노선집합(Candidate Route Set)을 생성하고 노선집합의 최적조합을 찾는 메타휴리스틱(Meta-heuristic) 알고리즘을 이용하여 전역최적 노선집합을 찾는 방법이 적용되고 있다. 최적 버스 노선망의 배차횟수를 결정하기 위해서 대중교통 통행배분모형이 필요한데 BTRNDP에 적용되는 통행배분모형은 다중경로 통행배분모형이 주로 활용되었다. 국내외 BTRNDP를 고찰한 결과 주요 시사점으로는 BTRNDP에서 가장 중요한 고려사항은 세분화된 버스정류장 기반 기종점통행량 구축, 버스 노선망 평가 모형 및 대중교통 통행 배분모형의 개발, 탐색 해알고리즘의 개발 등의 향후 연구내용이 포함될 수 있다.

보행자용 도로망 선형단순화를 위한 도로속성정보 기반 임계값 자동 선정 연구 (A Study on Automatic Threshold Selection in Line Simplification for Pedestrian Road Network Using Road Attribute Data)

  • 박범섭;양성철;유기윤
    • 한국측량학회지
    • /
    • 제31권4호
    • /
    • pp.269-275
    • /
    • 2013
  • 최근 들어 모바일 단말기를 휴대하고 이동하는 사용자에게 경로안내 및 주변 위치정보 안내와 같은 개인화된 서비스가 가능해졌다는 점에서 보행자용 도로망의 중요성이 커지고 있다. 한편, 전국단위 도로망 신규 구축과 갱신에 많은 비용이 소요된다는 점은 활성화의 제약조건으로 작용하고 있어 래스터 데이터를 기반으로 한 보행자용 도로망 추출 알고리즘을 적용한 자동 생성 방안이 필요한 상황이다. 그러나 생성된 도로망은 불필요한 결절점이 다수 포함되어 경로 안내 시 과도한 방향전환을 야기하고 데이터 용량 증가를 초래하는 등 유지관리 차원에서의 비효율이 발생한다. 본 연구에서는 이를 제거하기 위해 Douglas-Peucker 알고리듬 적용 과정에서 수치지도 도로의 속성정보를 이용하여 각 선형 객체별로 적합한 임계값을 부여함으로써 선형단순화의 효과는 극대화하고 실제 도로의 형태를 왜곡하지 않도록 최적의 임계값을 자동 선정하였다. 실험 대상 지역의 보행자용 도로망에 적용한 결과 결절점 감소율과 위치정확도 측면에서 제안된 방법이 자동 선형단순화에 적합하다는 결과를 얻을 수 있었다.

AOMDV의 특성과 진동 센서를 적용한 이동성과 연결성이 개선된 WSN용 LEACH 프로토콜 연구 (A Research of LEACH Protocol improved Mobility and Connectivity on WSN using Feature of AOMDV and Vibration Sensor)

  • 이양민;원준위;차미양;이재기
    • 정보처리학회논문지C
    • /
    • 제18C권3호
    • /
    • pp.167-178
    • /
    • 2011
  • 유비쿼터스 서비스의 성장과 함께 여러 종류의 애드 혹 네트워크가 등장하게 되었다. 특히 애드 혹 네트워크에는 무선 센서 네트워크와 모바일 애드 혹 네트워크가 많이 알려져 있는데, 앞서 서술한 두 가지 네트워크의 특성을 혼합한 무선 애드 혹 네트워크도 존재한다. 본 논문은 LEACH 라우팅 프로토콜을 혼합 네트워크 환경에 적합하도록 개선한 변형된 LEACH 프로토콜 제안한다. 즉 제안한 라우팅 프로토콜은 대규모 이동 센서 노드로 구성된 네트워크에서 노드 검출과 경로 탐색 및 경로 유지를 제공하며, 동시에 노드의 이동성, 연결성, 에너지 효율성을 유지할 수 있다. 제안한 라우팅 프로토콜은 멀티-홉(multi-hop) 및 멀티-패스(multi-path) 알고리즘을 적용하고, 토플로지 재구성 기법으로는 이동중인 대규모 노드에 대한 노드 이동 평가, 진동 센서, 효율적인 경로 선택과 데이터 전송 기법을 이용하여 구현하였다. 실험에서는 제안한 프로토콜과 기존의 전통적인 LEACH 프로토콜을 비교하여 성능을 나타내었다.

hERG 이온채널 저해제에 대한 2D-QSAR 분석 (2D-QSAR analysis for hERG ion channel inhibitors)

  • 전을혜;박지현;정진희;이성광
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.533-543
    • /
    • 2011
  • hERG (human ether-a-go-go related gene) 이온채널은 심장 재분극의 중요 요소이며 이 채널의 저해제는 부정맥과 돌연사를 유발할 수 있다. 따라서, 신약개발과정에서 후보물질이 hERG 이온채널의 잠재적인 저해제일 경우에는 심장독성 부작용을 유발하므로, 이를 최소화하고자 많은 노력이 집중되고 있다. 본 연구는 HEK(인간 배아 신장)세포에서 얻은 202개 유기화합물의 $IC_{50}$ 데이터를 이용하여 2차원 구조-활성의 정량적 관계(2D-QSAR)방법으로 예측하는 모델을 개발하였다. hERG이온채널 저해제의 기계 학습방법으로는 다중선형회귀(Multiple Linear Regression), 서포트 벡터 머신(Support Vector Machine: SVM)방법과 인공신경망(Artificial Neural Network)방법이며, 교차검증을 적용한 모집단 기반 전진선택(forward selection)방법과 결합하여 각 학습모델에 적합한 최적의 표현자들을 결정하였다. 가장 우수한 방법은 14종의 표현자를 사용한 인공신경망방법($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583)이었고, 다중선형회귀방법을 통해서 hERG이온채널 저해물질의 구조적 특징과 수용체와의 상호작용을 설명할 수 있다. QSAR모델의 검증은 교차검증과 Y-scrambling test방법으로 수행하였다.

실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법 (A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks)

  • 이상환
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.421-426
    • /
    • 2010
  • 무선 메쉬 네트워크는 쉬운 설치와 향상된 커버리지로 인해 많은 관심과 연구가 진행되고 있다. 예를 들면 메쉬 네트워크에서 throughput을 향상시키는 라우팅 프로토콜에 관한 연구나, 메쉬 링크의 품질을 측정하는 방법 등 다양하다. 하지만 이러한 연구들 중 대부분은 메쉬 라우터의 위치가 고정되어 있다고 가정한다. 하지만 실내 메쉬 네트워크의 경우 관리자가 메쉬 네트워크를 독점적으로 관리하기 때문에 설치 시에 메쉬 라우터를 설치할 위치를 마음대로 결정할 수 있다. 따라서 처음부터 메쉬 네트워크의 성능을 고려하여 메쉬 라우터를 설치하는 것은 성능향상에 필수적이다. 이 논문에서는 유전자 기반 최적화 알고리즘을 바탕으로 메쉬 네트워크의 특성 (간섭, 패킷 전달 토폴로지 등)을 고려한 메쉬 라우터 위치선정 기법을 제시한다. 기존에 메쉬 네트워크는 아니지만 다양한 무선 내트워크에서 기지국이나 AP등을 설치하는 문제가 연구되었고, 메쉬 네트워크의 고정된 메쉬 라우터 집합에서 게이트웨이를 선택하는 문제등이 연구되었지만, 메쉬 라우터의 위치를 선택하는데 있어서, 메쉬 라우터들의 위치나 메쉬 라우터 상에서의 패킷 전송 토폴로지에 의한 간섭을 고려한 연구는 없었다. 다양한 시뮬레이션을 통해 이 논문에서 제시된 기법이 랜덤 선택 기법에 비해 30-40%의 향상을 달성하였음을 보였다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발 (Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge)

  • 김기중;박유신;박성우
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.414-419
    • /
    • 2020
  • 본 연구에서는 사장교의 케이블 가속도계로부터 확보한 방대한 계측데이터의 활용을 확대하고자 인공지능 기반의 케이블 장력 추정 모델을 개발하였다. 케이블 장력 추정 모델은 진동법에 따른 장력 추정 과정에서 고유진동수를 판정할 수 있는 알고리즘을 핵심으로 하며 학습데이터 구성에 적합하고 판정 결과에 대한 성능이 확보될 수 있도록 입력층, 은닉층, 출력층으로 구성되는 인공신경망(Artificial Neural Network)을 적용하였다. 인공신경망의 학습데이터는 케이블 가속도 계측데이터를 진동수로 변환 후 구성하였으며 고유진동수를 중심으로 일정한 패턴을 갖는 특성을 활용하여 기계학습을 진행하였다. 학습데이터 구성 시 다수 패턴의 고유진동수를 대표할 수 있도록 다양한 크기의 진폭을 갖는 진동수를 사용하고 일정 수준으로 진동수를 누적하여 사용할 경우 고유진동수에 대한 판정 성능이 개선됨을 확인하였다. 장력 추정 모델의 성능을 판단하기 위해 계측분석 기술자에 의해 추정한 장력의 관리기준과 비교하였다. 케이블 가속도계로부터 확보한 139개의 진동수를 입력값으로 사용하여 검증을 수행한 결과 실제 정답과 유사하게 고유진동수를 판정하였고 고유진동수에 의해 케이블의 장력을 추정한 결과는 96.4%의 수준으로 관리기준에 부합하는 결과를 보여주고 있다.