• 제목/요약/키워드: network selection

검색결과 1,797건 처리시간 0.028초

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • 제3권2호
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

역퍼지화 기반의 인스턴스 선택을 이용한 파킨슨병 분류 (Classification of Parkinson's Disease Using Defuzzification-Based Instance Selection)

  • 이상홍
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.109-116
    • /
    • 2014
  • 본 논문에서는 분류 성능을 향상하기 위해서 Takagi-Sugeno(T-S) 퍼지 모델 기반의 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions; NEWFM)을 이용한 새로운 인스턴스 선택을 제안하였다. 제안하는 인스턴스 선택은 T-S 퍼지 모델에서의 가중 평균 역퍼지화와 통계학에서 사용하는 정규분포의 신뢰구간과 같은 구간 선택을 이용하여 인스턴스를 선택하였다. 제안하는 인스턴스 선택의 분류 성능을 평가하기 위해서 인스턴스 사용 전/후에 따라서 분류 성능을 비교하였다. 인스턴스 사용 전/후에 따른 분류 성능은 각각 77.33%, 78.19%로 나타났다. 또한 인스턴스 사용 전/후에 따른 분류 성능 간에 차이점을 보여주기 위해서 통계학에서 사용하는 맥니마 검정을 사용하였다. 맥니마 검정의 결과로 유의 확률이 0.05보다 적게 나오므로 인스턴스 선택의 분류 성능이 인스턴스 선택을 하지 않는 경우의 분류 성능보다 우수함을 확인 할 수가 있었다.

The Improved Energy Efficient LEACH Protocol Technology of Wireless Sensor Networks

  • Shrestha, Surendra;Kim, Young Min;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권1호
    • /
    • pp.30-35
    • /
    • 2015
  • The most important factor within the wireless sensor network is to have effective network usage and increase the lifetime of the individual nodes in order to operate the wireless network more efficiently. Therefore, many routing protocols have been developed. The LEACH protocol presented by Wendi Hein Zelman, especially well known as a simple and efficient clustering based routing protocol. However, because LEACH protocol in an irregular network is the total data throughput efficiency dropped, the stability of the cluster is declined. Therefore, to increase the stability of the cluster head, in this paper, it proposes a stochastic cluster head selection method for improving the LEACH protocol. To this end, it proposes a SH-LEACH (Stochastic Cluster Head Selection Method-LEACH) that it is combined to the HEED and LEACH protocol and the proposed algorithm is verified through the simulation.

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

과탐지 감소를 위한 NSA 기반의 다중 레벨 이상 침입 탐지 (Negative Selection Algorithm based Multi-Level Anomaly Intrusion Detection for False-Positive Reduction)

  • 김미선;박경우;서재현
    • 정보보호학회논문지
    • /
    • 제16권6호
    • /
    • pp.111-121
    • /
    • 2006
  • 인터넷이 빠르게 성장함에 따라 네트워크 공격기법이 변화되고 새로운 공격 형태가 나타나고 있다. 네트워크상에서 알려진 침입의 탐지는 효율적으로 수행되고 있으나 알려지지 않은 침입에 대해서는 오탐지(false negative)나 과탐지(false positive)가 너무 높게 나타난다. 또한, 네트워크상에서 지속적으로 처리되는 대량의 패킷에 대하여 실시간적인 탐지와 새로운 침입 유형에 대한 대응방법과 인지능력에 한계가 있다. 따라서 다양한 대량의 트래픽에 대해서 탐지율을 높이고 과탐지를 감소할 수 있는 방법이 필요하다. 본 논문에서는 네트워크 기반의 이상 침입 탐지 시스템에서 과탐지를 감소하고, 침입 탐지 능력을 향상시키기 위하여 다차원 연관 규칙 마이닝과 수정된 부정 선택 알고리즘(Negative Selection Algorithm)을 결합한 다중 레벨 이상 침입 탐지 기술을 제안한다. 제안한 알고리즘의 성능 평가를 위하여 기존의 이상 탐지 알고리즘과 제안된 알고리즘을 수행하여, 각각의 과탐지율을 평가, 제시하였다.

DQN 기반 비디오 스트리밍 서비스에서 세그먼트 크기가 품질 선택에 미치는 영향 (The Effect of Segment Size on Quality Selection in DQN-based Video Streaming Services)

  • 김이슬;임경식
    • 한국멀티미디어학회논문지
    • /
    • 제21권10호
    • /
    • pp.1182-1194
    • /
    • 2018
  • The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.

A CDN-P2P Hybrid Architecture with Location/Content Awareness for Live Streaming Services

  • Nguyen, Kim-Thinh;Kim, Young-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권11호
    • /
    • pp.2143-2159
    • /
    • 2011
  • The hybrid architecture of content delivery networks (CDN) and peer-to-peer overlay networks (P2P) is a promising technology enables effective real-time streaming services. It complements the advantages of quality control and reliability in a CDN, and the scalability of a P2P system. With real-time streaming services, however, high connection setup and media delivery latency are becoming the critical issues in deploying the CDN-P2P system. These issues result from biased peer selection without location awareness or content awareness, and can lead to significant service disruption. To reduce service disruption latency, we propose a group-based CDN-P2P hybrid architecture (iCDN-P2P) with a location/content-aware selection of peers. Specifically, a SuperPeer network makes a location-aware peer selection by employing a content addressable network (CAN) to distribute channel information. It also manages peers with content awareness, forming a group of peers with the same channel as the sub-overlay. Through a performance evaluation, we show that the proposed architecture outperforms the original CDN-P2P hybrid architecture in terms of connection setup delay and media delivery time.

A3C 기반의 강화학습을 사용한 DASH 시스템 (A DASH System Using the A3C-based Deep Reinforcement Learning)

  • 최민제;임경식
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

IPv6 멀티캐스트 네트워크에서 가상 학술회의 시스템의 성능 분석 (Performance Analysis of Virtual Conference System in the IPv6 Multicast Network)

  • 엄태랑;도진숙;이경근
    • 한국통신학회논문지
    • /
    • 제28권1B호
    • /
    • pp.45-54
    • /
    • 2003
  • PIM-SM 방식에서는 RP(Rendezvous Point) 선정에 따라 멀티캐스트 그룹 멤버 간의 지연, 패킷 손실 등의 요인으로 인해 QoS에 미치는 영향이 크기 때문에 주의 깊은 RP 선정 기법을 필요로 한다 QoS 기반으로 RP를 선정하는 기법에서는 대역폭, 지연 등과 같은 QoS 변수를 모두 만족하는 노드를 RP로 선정한다. 본 논문에서는 그룹 기반 선정 방식에 속하는 새로운 RP 선정 방식을 제안한다 MCT(Maximum Cross Tree) 방식으로 불리는 새로운 알고리즘은 형상 기반 선정 방식과 그룹 기반 선정 방식의 장점을 취하여 구현한 방식이다 이를 검증하기 위하여 초고속 선도망을 통한 IPv6 네트워크 상에서 구현한 가상 학술회의 시스템의 멀티캐스트 트래픽 데이터를 측정하고, 제안된 알고리즘을 컴퓨터 시뮬레이션을 통해 두 가지 형태의 네트워크 모델에 적용하여 결과를 확장하고 성능을 분석한다.