• 제목/요약/키워드: network recognition

검색결과 2,520건 처리시간 0.029초

Face Recognition Based on Improved Fuzzy RBF Neural Network for Smar t Device

  • Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제16권11호
    • /
    • pp.1338-1347
    • /
    • 2013
  • Face recognition is a science of automatically identifying individuals based their unique facial features. In order to avoid overfitting and reduce the computational reduce the computational burden, a new face recognition algorithm using PCA-fisher linear discriminant (PCA-FLD) and fuzzy radial basis function neural network (RBFNN) is proposed in this paper. First, face features are extracted by the principal component analysis (PCA) method. Then, the extracted features are further processed by the Fisher's linear discriminant technique to acquire lower-dimensional discriminant patterns, the processed features will be considered as the input of the fuzzy RBFNN. As a widely applied algorithm in fuzzy RBF neural network, BP learning algorithm has the low rate of convergence, therefore, an improved learning algorithm based on Levenberg-Marquart (L-M) for fuzzy RBF neural network is introduced in this paper, which combined the Gradient Descent algorithm with the Gauss-Newton algorithm. Experimental results on the ORL face database demonstrate that the proposed algorithm has satisfactory performance and high recognition rate.

적응 MFCC와 Neural Network 기반의 음성인식법 (Voice Recognition Based on Adaptive MFCC and Neural Network)

  • 배현수;이석규
    • 대한임베디드공학회논문지
    • /
    • 제5권2호
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we propose an enhanced voice recognition algorithm using adaptive MFCC(Mel Frequency Cepstral Coefficients) and neural network. Though it is very important to extract voice data from the raw data to enhance the voice recognition ratio, conventional algorithms are subject to deteriorating voice data when they eliminate noise within special frequency band. Differently from the conventional MFCC, the proposed algorithm imposed bigger weights to some specified frequency regions and unoverlapped filterbank to enhance the recognition ratio without deteriorating voice data. In simulation results, the proposed algorithm shows better performance comparing with MFCC since it is robust to variation of the environment.

플라즈마 진단을 위한 Scanning Electron Microscope Image의 신경망 인식 모델 (Neural Network Recognition of Scanning Electron Microscope Image for Plasma Diagnosis)

  • 고우람;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.132-134
    • /
    • 2006
  • To improve equipment throughput and device yield, a malfunction in plasma equipment should be accurately diagnosed. A recognition model for plasma diagnosis was constructed by applying neural network to scanning electron microscope (SEM) image of plasma-etched patterns. The experimental data were collected from a plasma etching of tungsten thin films. Faults in plasma were generated by simulating a variation in process parameters. Feature vectors were obtained by applying direct and wavelet techniques to SEM Images. The wavelet techniques generated three feature vectors composed of detailed components. The diagnosis models constructed were evaluated in terms of the recognition accuracy. The direct technique yielded much smaller recognition accuracy with respect to the wavelet technique. The improvement was about 82%. This demonstrates that the direct method is more effective in constructing a neural network model of SEM profile information.

  • PDF

Tobacco Sales Bill Recognition Based on Multi-Branch Residual Network

  • Shan, Yuxiang;Wang, Cheng;Ren, Qin;Wang, Xiuhui
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.311-318
    • /
    • 2022
  • Tobacco sales enterprises often need to summarize and verify the daily sales bills, which may consume substantial manpower, and manual verification is prone to occasional errors. The use of artificial intelligence technology to realize the automatic identification and verification of such bills offers important practical significance. This study presents a novel multi-branch residual network for tobacco sales bills to improve the efficiency and accuracy of tobacco sales. First, geometric correction and edge alignment were performed on the input sales bill image. Second, the multi-branch residual network recognition model is established and trained using the preprocessed data. The comparative experimental results demonstrated that the correct recognition rate of the proposed method reached 98.84% on the China Tobacco Bill Image dataset, which is superior to that of most existing recognition methods.

변형에 무관한 필기체 문자 인식을 위한 퍼지 신경망과 학습 알고리즘 (A Novel Fuzzy Neural Network and Learning Algorithm for Invariant Handwritten Character Recognition)

  • 유정수
    • 정보교육학회논문지
    • /
    • 제1권1호
    • /
    • pp.28-37
    • /
    • 1997
  • 본 논문에서는 퍼지 집합을 기반으로한 새로운 신경망에 대해 기술하고 있다. 새로운 퍼지 신경망은 변형에 영향을 받지 않는 문자 인식을 적용하였다. 퍼지 신경망은 5개 층으로 구성되어 있다. 구현 결과 왜곡, 이동, 회전 및 필기체 문자의 크기가 서로 달라도 문자들을 정확하게 인식함을 보였다. 잡은(8${\sim}$30%)이 있는 경우에도 정확하게 인식을 하였다. 이동, 왜곡, 서로 다른 문자 크기 및 잡음은 L2 층에 의해서 이루어 졌으며, 회전에 영향을 받지 않게 하기 위해서 L5층을 구성하였다. 퍼지 신경망을 훈련하기 위해서 108개 문자를 사용하였으며 훈련 패턴에서 1- 또는 2-픽셀의 이동이 있는 경우에도 100%의 인식률을 보였다. ${\pm}20^{\circ}$ 도 정도 회전된 문자인 경우에는 정확하게 인식하였다. 또한 제안된 퍼지 신경망은 학습된 문자인 경우 100% 인식률을 가지고 recall하였다. 제안된 퍼지 신경망은 구조가 간단하고 학습 속도와 recall속도가 매우 빨랐다. 본 퍼지 신경망은 필기체 문자열의 분할과 인식에도 적용하였다.

  • PDF

음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구 (A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition)

  • 장춘서
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.699-704
    • /
    • 2001
  • 본 논문에서는 혼성 모듈 구조의 recurrent 시간지연신경회로망(time-delay neural network)과 HMM(hidden Markov model)을 결합한 음성인식을 위한 새로운 구조에 대해 연구하였다. 시간지연신경회로망에서는 윈도우 크기를 확장하는 것이 인식률 향상에 유리하므로 이를 위해 첫 번째 은닉층에 궤환 구조를 사용하여 윈도우 크기를 실제로 크게 하지 않고도 동일한 효과를 얻을 수 있도록 하였다. 다음 이 시간지연신경망에서 입력된 음소의 특징 벡터의 시간에 따라 변화하는 성질을 잘 처리 할 수 있도록 시간지연신경회로망의 입력층을 복수의 상태로 나누어 음소특징의 시간축에 대한 각 상태마다 특징 감지기를 갖도록 하였다. 이때 시간지연신경회로망은 전체 음성인식 영역에 적용될 수 있도록 모듈 방식의 구조로 구성되었다. 그리고 이 모듈 구조 시간지연신경망의 출력 벡터를 HMM에 연결하여 서로 결합 하므로써 양 구조의 장점을 취하는 혼성 구조의 인식시스템을 구성하였고 이때 이 혼성 구조에서 효율적으로 적용할 수 있는 HMM 파라미터 smoothing 방법을 제시하였다.

  • PDF

공용 신경망의 다중 학습을 통한 음소와 감정 인식의 성능 향상 (Performance Enhancement of Phoneme and Emotion Recognition by Multi-task Training of Common Neural Network)

  • 김재원;박호종
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.742-749
    • /
    • 2020
  • 본 논문에서는 하나의 공용 신경망을 사용하여 음소와 감정을 모두 인식하는 방법과 공용 신경망 학습을 위한 다중 학습 방법을 제안한다. 공용 신경망은 동일한 동작을 수행하여 두 정보를 모두 인식하며, 이는 인간이 하나의 청각기관으로 여러 정보를 동시에 인식하는 구조에 해당한다. 다중 학습은 여러 정보를 위한 공통 모델링을 진행하므로 여러 정보에 대한 일반화된 학습을 진행시켜 기존의 정보별 개별 학습에서 나타나는 과적합을 감소시키고 인식 성능을 향상시킨다. 또한, 다중 학습에서 음소 인식에 가중치를 부여하여 음소 인식 성능을 추가 향상시키는 방법을 제안한다. 동일한 특성벡터와 신경망을 사용할 때, 제안한 다중 학습이 적용된 공용 신경망의 성능이 각 정보별로 학습시킨 개별 신경망에 비하여 우수한 것을 확인하였다.

역전파 선경회로망의 인식성능 향상에 관한 연구 (On the Enhancement of the Recognition Performance for Back Propagation Neural Networks)

  • 홍봉화;이지영
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.86-93
    • /
    • 1999
  • 본 논문에서는 다중 모듈러 신경회로망과 보상입력 알고리즘을 제안하였다. 전자는 신경회로망의 고질적인 문제중의 하나인 수렴속도의 감소를 위하여 제안하였고, 후자는 신경회로망의 인식수행능력 향상을 도모하기 위하여 제안하였다. 본 논문의 실험구성은 두 가지 형태와 시뮬레이션으로 나누어 구성하였다. 첫째로 다중 신경회로망의 구조에 한글, 영문자 와 숫자를 적용하여 인식 실험하였다. 둘째로, 보상입력 알고리즘과 보상입력을 결정하는 단계를 기술하였다. 제안된 알고리즘을 한글, 영문자. 숫자인식에 적용하여 기존의 신경회로망과 비교 평가하였다. 실험결과. 본 논문에서 제안된 모듈러 신경회로망이 기존의 신경회로망에 비하여 3배 이상 수렴속도가 개선되었고 보정입력 알고리즘을 적용한 다중 모듈러 신경회로망은 기존의 신경회로망에 비하여 10%정도 인식률이 향상됨을 고찰하였다.

  • PDF

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

Recognition of Passports using CDM Masking and ART2-based Hybrid Network

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.213-217
    • /
    • 2008
  • This paper proposes a novel method for the recognition of passports based on the CDM(Conditional Dilation Morphology) masking and the ART2-based RBF neural networks. For the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an ART2-based hybrid network that adapts the ART2 network for the middle layer. This network is applied to the recognition of individual codes. The experiment results showed that the proposed method has superior in performance in the recognition of passport.