• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.035 seconds

A design system of telecommunication networks using structural knowledge and object data (통신모형의 구조적인 지식과 객체형 데이터를 이용한 망설계시스템)

  • 김철수
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.205-227
    • /
    • 1997
  • Higher level representation splay an important role in model management systems. The role is to make decision makers friendly represent their problem using the representations. In this research, we address higher level representations including five distinctivenesses: Objective, Node, Link, Topological Constraint including five components, and Decision, Therefore, it is developed a system called HLRNET that implements the building procedure of network models using structural knowledge and object data The paper particularly elaborates all components included in each of distinctiveness extracted from structural characteristics of a lot of telecommunication network models. Higher level representations represented with five destinctivenesses should be converted into base level representations which are employed for semantic representations of linear and integer programming problems in a knowledge-assisted optimization modeling system. The system is illustrated with an example of the local access network model.

  • PDF

Multi-Stage Supply Chain Network Design Using a Cooperative Coevolutionary Algorithm Based on a Permutation Representation (순열 표현 기반의 협력적 공진화 알고리즘을 사용한 다단계 공급사슬 네트워크의 설계)

  • Han, Yong-Ho
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.21-34
    • /
    • 2012
  • This paper addresses a network design problem in a supply chain system that involves locating both plants and distribution centers, and determining the best strategy for distributing products from the suppliers to the plants, from the plants to the distribution centers and from the distribution centers to the customers. This paper suggests a cooperative coevolutionary algorithm (CCEA) approach to solve the model. First, the problem is decomposed into three subproblems for each of which the chromosome population is created correspondingly. Each chromosome in each population is represented as a permutation denoting the priority. Then an algorithm generating a solution from the combined set of chromosomes from each population is suggested. Also an algorithm evaluating the performance of a solution is suggested. An experimental study is carried out. The results show that our CCEA tends to generate better solutions than the previous CCEA as the problem size gets larger and that the permutation representation for chromosome used here is better than other representation.

Loss Minimization for Distribution Network using Partial Tree Search (부분 tree 탐색을 이용한 배전계통의 손실 최소화)

  • Choi, S.Y.;Shin, M.C.;Nam, G.Y.;Cho, P.H.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.519-521
    • /
    • 2000
  • Network reconfiguration is an operation task, and consists in the determination of the switching operations such to reach the minimum loss conditions of the distribution network. In this paper, an effective heuristic based switch scheme for loss minimization is given for the optimization of distribution loss reduction and a solution approach is presented. The solution algorithm for loss minimization has been developed based on the two stage solution methodology. The first stage of this solution algorithm sets up a decision tree which represent the various switching operations available, the second stage applies a proposed technique called cyclic best first search. Therefore, the solution algorithm of proposed method can determine on-off switch statuses for loss reduction, with a minimum computational effort.

  • PDF

A Production Planning Algorithm for a Supply Chain Network Considering Bark-Order and Resource Capacity Using GRASP Method (GRASP 기법을 이용한 주문이월과 자원제약을 고려한 공급사슬 망에서의 생산계획 알고리즘)

  • Shin, Hyun-Joon;Lee, Young-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.29-39
    • /
    • 2009
  • In an environment of global competition, the success of a manufacturing corporation is directly related to how it plans and executes production in particular as well as to the optimization level of its process in general. This paper proposes a production planning algorithm for the Multi-Level, multi-item Capacitated Lot Sizing Problem (MLCLSP) in supply chain network considering back-order. MLCLSP corresponds to a mixed integer programming (MIP) problem and is NP-hard. Therefore, this paper proposes an effective algorithm, GRHS (GRASP-based Rolling Horizon Search) that solves this problem within reasonable computational time and evaluates its performance under a variety of problem scenarios.

An Improved Genetic Algorithm for Fast Face Detection Using Neural Network as Classifier

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1034-1038
    • /
    • 2005
  • This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and develops an improved genetic algorithm (IGA) to solve it. Each individual in the IGA represents a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. Experimental results show that the proposed method leads to a speedup of 83 on $320{\times}240$ images compared to the traditional exhaustive search method.

  • PDF

Optimization of 3D target feature-map using modular mART neural network (모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화)

  • 차진우;류충상;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

SIP Dealing with Location Based Information

  • Requena, Jose-Costa;Haitao Tang;Inmaculada Espigares Del Pozo
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.351-360
    • /
    • 2001
  • This paper introduces an approach for providing Location Based Services (LBS) using Spatial Location (SLO) information within the Session Initiation Protocol (SIP). The aim of the paper is to set up the framework for providing LBS services in devices connected to wire and wireless IP networks. This method uses SIP as transport and the SLO as data formal inserted in the SIP pay-load. It analyses the relationship among the network elements involved in the architecture, and its functionality fur providing access to network services regardless of the user location. In conclusion, this proposal enables SIP to support location-related services such as messaging, location-based commerce, and any location-based computing. Furthermore, it describes the advantage of adding the user location information network resources optimization in mobile environments and future networks.

  • PDF

Research Status of Machine Learning for Self-Organizing Network - I (Self-Organizing Network에서 기계학습 연구동향-I)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.103-114
    • /
    • 2020
  • In this study, a machine learning (ML) algorithm is analyzed and summarized as a self-organizing network (SON) realization technology that can minimize expert intervention in the planning, configuration, and optimization of mobile communication networks. First, the basic concept of the ML algorithm in which areas of the SON of this algorithm are applied, is briefly summarized. In addition, the requirements and performance metrics for ML are summarized from the SON perspective, and the ML algorithm that has hitherto been applied to an SON achieves a performance in terms of the SON performance metrics.

A New Technology for Optimization of Bead Height Using ANN

  • Kim, Ill-Soo;Son, Joon-Sik;Sung, Back-Sub;Lee, Chang-Woo;Cha, Yong-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.208-213
    • /
    • 2001
  • Objective of this paper is to develop a new approach involving the use of an Artificial Neural Network(ANN) and multiple regression methods in the prediction of process parameters on bead height for GMA welding process. Using a series of robotic are welding, multi-pass butt welds carried out in order to verify the performance of the neural network estimator and multiple regression methods. To verify the developed system, the design parameters of the neural network estimator are selected from an estimation error analysis. The experimental results show that the proposed models can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Constraint Satisfaction Algorithm in Constraint Network using Simulated Annealing Method (Simulated Annealing을 이용한 제약 네트워크에서의 제약 충족방식에 관한 연구)

  • 차주헌;이인호;김재정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.589-594
    • /
    • 1997
  • We have already presented the constraint satisfaction algorithm which could solve the losed loop problem in constraint network by using local constraint propagation, variable elimination and constraint modularization. With this algorithm, we have implemented a knowledge-based system (intelligent CAD) for supporting machine design interactively. In this paper, we present newer constraint satisfaction algorithm which can solve inequalities or under-constrained problems in constraint network, interactively and efficiently. This algorithm is a hybrid type of using both declarative description (constraint represention) and optimization algorithm (Simulated Annealing), simultaneously. The under-constrained problems are represented by constraint networks and satisfied completely with this algorithm. The usefulness of our algorithm will be illustrated by the application to a gear design.

  • PDF