• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.034 seconds

A Study on Network Based Traffic Signal Optimization Using Traffic Prediction Data (교통예측자료 기반 Network 차원의 신호제어 최적화 방안)

  • Han, Jeong-hye;Lee, Seon-Ha;Cheon, Choon-Keun;Oh, Tae-ho;Kim, Eun-Ji
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.77-90
    • /
    • 2015
  • An increasing number of vehicles is causing various traffic problems such as chronic congestion of highways and air pollution. Local governments have been managing traffic by constructing systems such as Intelligent Transport Systems (ITS) and Advanced Traffic Management Systems (ATMS) to relieve such problems, but construction of an infrastructure-based traffic system is insufficient in resolving chronic traffic problems. A more sophisticated system with enhanced operational management capabilities added to the existing facilities is necessary at this point. As traffic patterns of the urban traffic flow is time-specific due to the different vehicle populations throughout the time of the day, a local network-wide signal operation plan that can manage such situation-specific traffic patterns is deemed to be necessary. Therefore, this study is conducted for the purpose of establishment of a plan for contextual signal control management through signal optimization at the network level after setting the Frame Signal in accordance to the traffic patterns gathered from the short-term traffic forecast data as a means to mitigate the problems with existing standardized signal operations.

A Fast Global Mobility Supporting Scheme for IPv6 Using Global Mobility Agent (GMA) (Global Mobility Agent (GMA) 기반의 신속한 IPv6 전역 이동성 지원 방안)

  • Ahn, Jin-Su;Seo, Won-Kyeong;Choi, Jae-In;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1105-1114
    • /
    • 2010
  • The Proxy Mobile IPv6 (PMIPv6) has been standardized by the IETF NETLMM WG for network-based mobility management. The PMIPv6 can provide IP mobility for Mobile Nodes (MNs) with low handover latency and less wireless resource usage. But, since the PMIPv6 is basically designed for local mobility management, it cannot support directly global mobility management between different PMIPv6 domains. In the PMIPv6, since all traffic is routed through a Local Mobility Anchor (LMA), it causes a long end-to-end delay and triangular routing problem. Therefore, in this paper, we propose a fast network-based global mobility management scheme and route optimization scheme with a new network entity, called Global Mobility Agent (GMA). Numerical analysis and simulation results show that the proposed scheme is able to support global mobility between different public domains with low handover latency and low end-to-end delay, compared with the PMIPv6.

Assessing the Vulnerability of Network Topologies under Large-Scale Regional Failures

  • Peng, Wei;Li, Zimu;Liu, Yujing;Su, Jinshu
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.451-460
    • /
    • 2012
  • Natural disasters often lead to regional failures that can cause network nodes and links co-located in a large geographical area to fail. Novel approaches are required to assess the network vulnerability under such regional failures. In this paper, we investigate the vulnerability of networks by considering the geometric properties of regional failures and network nodes. To evaluate the criticality of node locations and determine the critical areas in a network, we propose the concept of ${\alpha}$-critical-distance with a given failure impact ratio ${\alpha}$, and we formulate two optimization problems based on the concept. By analyzing the geometric properties of the problems, we show that although finding critical nodes or links in a pure graph is a NP-complete problem, the problem of finding critical areas has polynomial time complexity. We propose two algorithms to deal with these problems and analyze their time complexities. Using real city-level Internet topology data, we conducted experiments to compute the ${\alpha}$-critical-distances for different networks. The computational results demonstrate the differences in vulnerability of different networks. The results also indicate that the critical area of a network can be estimated by limiting failure centers on the locations of network nodes. Additionally, we find that with the same impact ratio ${\alpha}$, the topologies examined have larger ${\alpha}$-critical-distances when the network performance is measured using the giant component size instead of the other two metrics. Similar results are obtained when the network performance is measured using the average two terminal reliability and the network efficiency, although computation of the former entails less time complexity than that of the latter.

A Study on NAS-Linked Network Separation System Using AHP (AHP를 이용한 NAS 연동형 망분리 시스템에 관한 연구)

  • Kim, Min Su;Shin, Sang Il;Lee, Dong Hwi;Kim, Kui Nam J.
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2013
  • To provide high-quality services, national public institutions and companies have provided information and materials over the internet network. However, a risk of malware infection between transmission and reception of data leads to exposure to various security threats. For this reason, national institutions have proceeded with projects for network separation since 2008, and data linkage has been made using network connection storage through network separation technologies, along with physical network separation. However, the network connection storage has caused waste of resources and problems with data management due to the presence of the same data in internal network storage and external network storage. In this regard, this study proposes a method to connect internal and external network data using NAS storage as a way to overcome the limitations of physical network separation, and attempts to verify the priority of items for the optimization of network separation by means of AHP techniques.

Real-Time Control of Networked Control Systems via Ethernet

  • Ji Kun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.591-600
    • /
    • 2005
  • In this paper, we discuss real-time control of networked control systems (NCSs) and practical issues in the choice of the communication networks for this purpose. An appropriate integration of control systems, real-time environments, and network communication systems allows the optimization of the quality-of-control (QoC) in NCSs. We compare several prevailing network types that may be used in control applications to offer a guideline of choosing a proper network. A real-time operating environment is also presented as an important ingredient of NCS design. To evaluate its feasibility and effectiveness, a real-time NCS containing a ball magnetic levitation (Maglev) setup is implemented via an Ethernet. Based on the experimental results, it is concluded in this paper that real-time control via Ethernet is a practical and feasible solution to NCS design.

Performance Evaluation for Multicasting Video over OpenFlow-based Small-scale Network

  • Thi, Thuyen Minh;Huynh, Thong;Kong, In-Yeup;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1084-1091
    • /
    • 2014
  • When demand for transmitting multimedia data increases, network congestion is more likely to occur and users will suffer high loss rate as well as high delay. In order to enhance quality-of-service (QoS) of video multicasting, we need to raise transmission reliability and reduce end-to-end delay. This paper proposes a routing mechanism for a OpenFlow-based small-scale network in order to multicast video reliably with low delay. In our method, multipath routing will be applied to Multiple Description (MD) Coded video to exploit its multi-description property. Through performance evaluation, our method shows improvement on loss rate, delay and video distortion.

Genetic Algorithm based Methodology for an Single-Hop Metro WDM Networks

  • Yang, Hyo-Sik;Kim, Sung-Il;Shin, Wee-Jae
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • We consider the multi-objective optimization of a multi-service arrayed-waveguide grating-based single-hop metro WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. We develop and evaluate a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Our methodology provides the network architecture and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with our methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

Energy-aware Virtual Resource Mapping Algorithm in Wireless Data Center

  • Luo, Juan;Fu, Shan;Wu, Di
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.819-837
    • /
    • 2014
  • Data centers, which implement cloud service, have been faced up with quick growth of energy consumption and low efficiency of energy. 60GHz wireless communication technology, as a new option to data centers, can provide feasible approach to alleviate the problems. Aiming at energy optimization in 60GHz wireless data centers (WDCs), we investigate virtualization technology to assign virtual resources to minimum number of servers, and turn off other servers or adjust them to the state of low power. By comprehensive analysis of wireless data centers, we model virtual network and physical network in WDCs firstly, and propose Virtual Resource Mapping Packing Algorithm (VRMPA) to solve energy management problems. According to VRMPA, we adopt packing algorithm and sort physical resource only once, which improves efficiency of virtual resource allocation. Simulation results show that, under the condition of guaranteeing network load, VPMPA algorithm can achieve better virtual request acceptance rate and higher utilization rate of energy consumption.

Internet Based Network Control using Fuzzy Modeling

  • Lee, Jong-Bae;Park, Chang-Woo;Sung, Ha-Gyeong;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1162-1167
    • /
    • 2004
  • This paper presents the design methodology of digital fuzzy controller(DFC) for the systems with time-delay. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering time-delay become easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to solve the stable feedback gains and a common Lyapunov function for designed fuzzy control system. To show the effectiveness the proposed control scheme, the network control example is presented.

  • PDF