• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.035 seconds

Optimal Design of CMAC network Using Evolution Strategies (진화 스트레티지를 이용한 CMAC 망 최적 설계)

  • 이선우;김상권;김종환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents the optimization technique for design of a CMAC network by using an evolution strategies(ES). The proposed technique is designed to find the optimal parameters of a CMAC network, which can minimize the learning error between the desired output and the CMAC network's as well as the number of memory used in the CMAC network. Computer simulations demonstrate the effectiveness of the proposed design method.

  • PDF

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

Optimal Parallel Implementation of an Optimization Neural Network by Using a Multicomputer System (다중 컴퓨터 시스템을 이용한 최적화 신경회로망의 최적 병렬구현)

  • 김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.75-82
    • /
    • 1991
  • We proposed an optimal parallel implementation of an optimization neural network with linear increase of speedup by using multicomputer system and presented performance analysis model of the system. We extracted the temporal-and the spatial-parallelism from the optimization neural network and constructed a parallel pipeline processing model using the parallelism in order to achieve the maximum speedup and efficiency on the CSP architecture. The results of the experiments for the TSP using the Transputer system, show that the proposed system gives linear increase of speedup proportional to the size of the optimization neural network for more than 140 neurons, and we can have more than 98% of effeciency upto 16-node system.

  • PDF

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

Clustering Optimal Design in Wireless Sensor Network using Ant Colony Optimization (개미군 최적화 방법을 적용한 무선 센서 네트워크에서의 클러스터링 최적 설계)

  • Kim, Sung-Soo;Choi, Seung-Hyeon
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.55-65
    • /
    • 2009
  • The objective of this paper is to propose an ant colony optimization (ACO) for clustering design in wireless sensor network problem. This proposed ACO approach is designed to deal with the dynamics of the sensor nodes which can be adaptable to topological changes to any network graph in a time. Long communication distances between sensors and a sink in a sensor network can greatly consume the energy of sensors and reduce the lifetime of a network. We can greatly minimize the total communication distance while minimizing the number of cluster heads using proposed ACO. Simulation results show that our proposed method is very efficient to find the best solutions comparing to the optimal solution using CPLEX in 100, 200, and 400 node sensor networks.

Optimization of Computer Network with a Cost Constraint (비용 제약을 갖는 컴퓨터 네트워크의 최적화)

  • Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2007
  • This paper considers a topological optimization of a computer network design with a cost constraint. The objective is to find the topological layout of links, at maximal reliability, under the constraint that the network cost is less or equal than a given level of budget. This problem is known to be NP-hard. To efficiently solve the problem, a genetic approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a simulated annealing method.

Cancer Prediction Based on Radical Basis Function Neural Network with Particle Swarm Optimization

  • Yan, Xiao-Bo;Xiong, Wei-Qing;Hu, Liang;Zhao, Kuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7775-7780
    • /
    • 2014
  • This paper addresses cancer prediction based on radial basis function neural network optimized by particle swarm optimization. Today, cancer hazard to people is increasing, and it is often difficult to cure cancer. The occurrence of cancer can be predicted by the method of the computer so that people can take timely and effective measures to prevent the occurrence of cancer. In this paper, the occurrence of cancer is predicted by the means of Radial Basis Function Neural Network Optimized by Particle Swarm Optimization. The neural network parameters to be optimized include the weight vector between network hidden layer and output layer, and the threshold of output layer neurons. The experimental data were obtained from the Wisconsin breast cancer database. A total of 12 experiments were done by setting 12 different sets of experimental result reliability. The findings show that the method can improve the accuracy, reliability and stability of cancer prediction greatly and effectively.