• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.03 seconds

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

Using Ant Colony Optimization to Find the Best Precautionary Measures Framework for Controlling COVID-19 Pandemic in Saudi Arabia

  • Alshamrani, Raghad;Alharbi, Manal H.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.352-358
    • /
    • 2022
  • In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

Computer Architecture Execution Time Optimization Using Swarm in Machine Learning

  • Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.49-56
    • /
    • 2023
  • Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.

An improvement of control performance of ship by FNN controller (FNN 제어기에 의한 선박의 조종성능개선)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1228-1229
    • /
    • 2011
  • A novel approach has been promoted for FNN ship controllers. An Electro-hydraulic governor has been widely adopted to the ship speed control of propulsion marine diesel engines for a long time, it was very difficult for Electro-hydraulic governor to regulate the speed of high power engine with long stroke at low speed and low load, because of the jiggling phenomena by rough fluctuation of rotating torque and the hunting phenomena by long dead time occurred in fuel combustion process in the engine cylinder. This paper provides an efficient way for improving control performance by FNN controller. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

A Variable Demand Traffic Assignment Model Based on Stable Dynamics (안정동력학에 의한 가변수요 통행배정모형)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.61-83
    • /
    • 2009
  • This study developed a variable demand traffic assignment model by stable dynamics. Stable dynamics, suggested by Nesterov and do Palma[19], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. In this study, we generalize the stable dynamics into the model with variable demands. We suggest a three stage optimization model. In the first stage, we introduce critical travel times and dummy links and determine variable demands and link flows by applying an optimization problem to an extended network with the dummy links. Then we determine link travel times and path flows in the following stages. We present a numerical example of the application of the model to a given network.

A Heuristic Algorithm for Designing Near-Optimal Mobile Agent Itineraries

  • Gavalas Damianos
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.123-131
    • /
    • 2006
  • Several distributed architectures, incorporating mobile agent technology, have been recently proposed to answer the scalability limitations of their centralized counterparts. However, these architectures fail to address scalability problems, when distributed tasks requiring the employment of itinerant agents is considered. This is because they lack mechanisms that guarantee optimization of agents' itineraries so as to minimize the total migration cost in terms of the round-trip latency and the incurred traffic. This is of particular importance when MAs itineraries span multiple subnets. The work presented herein aspires to address these issues. To that end, we have designed and implemented an algorithm that adapts methods usually applied for addressing network design problems in the specific area of mobile agent itinerary planning. The algorithm not only suggests the optimal number of mobile agents that minimize the overall cost but also constructs optimal itineraries for each of them. The algorithm implementation has been integrated into our mobile agent framework research prototype and tested in real network environments, demonstrating significant cost savings.