• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.041 seconds

A Study on Multiplexer Assignment Problem for Efficient Dronebot Network (효율적인 드론봇 네트워크 구성을 위한 Multiplexer 할당모형에 관한 연구)

  • Seungwon Baik
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2023
  • In the midst of the development of science and technology based on the 4th industrial revolution, the ROK Army is moving forward with the ARMY TIGER 4.0 system, a ground combat system that combines future advanced science and technology. The system is developing around an AI-based hyper-connected ground combat system, and has mobility, intelligence, and networking as core concepts. Especially, the dronebot combat system is used as a compound word that refers to unmanned combat systems including drones and ground unmanned systems. In future battlefields, it is expected that the use of unmanned and artificial intelligence-based weapon systems will increase. During the transition to a complete unmanned system, it is a very important issue to ensure connectivity individual unmanned systems themselves or between manned and unmanned systems on the battlefield. This paper introduces the Multiplexer Allocation Problem (MAP) for effective command control and communication of UAV/UGV, and proposes a heuristic algorithm. In addition, the performance of the proposed algorithm is analyzed by comparing the solutions and computing time. Also, we discuss future research area for the MAP.

  • PDF

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

A counting-time optimization method for artificial neural network (ANN) based gamma-ray spectroscopy

  • Moonhyung Cho;Jisung Hwang;Sangho Lee;Kilyoung Ko;Wonku Kim;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2690-2697
    • /
    • 2024
  • With advancements in machine learning technologies, artificial neural networks (ANNs) are being widely used to improve the performance of gamma-ray spectroscopy based on NaI(Tl) scintillation detectors. Typically, the performance of ANNs is evaluated using test datasets composed of actual spectra. However, the generation of such test datasets encompassing a wide range of actual spectra representing various scenarios often proves inefficient and time-consuming. Thus, instead of measuring actual spectra, we generated virtual spectra with diverse spectral features by sampling from categorical distribution functions derived from the base spectra of six radioactive isotopes: 54Mn, 57Co, 60Co, 134Cs, 137Cs, and 241Am. For practical applications, we determined the optimum counting time (OCT) as the point at which the change in the Kullback-Leibler divergence (ΔKLDV) values between the synthetic spectra used for training the ANN and the virtual spectra approaches zero. The accuracies of the actual spectra were significantly improved when measured up to their respective OCTs. The outcomes demonstrated that the proposed method can effectively determine the OCTs for gamma-ray spectroscopy based on ANNs without the need to measure actual spectra.

A Study on Efficient Stowage Planning for Vehicle Carriers (차량 운반선의 효율적인 선적 계획 수립에 관한 연구)

  • JI Yeon Kim;Ki-Hwan Kim;Young-Jin Kang;Seok Chan Jeong;Hoon Lee
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • The logistics industry is becoming increasingly important as it is closely linked to our daily lives, storing and transporting the goods and resources that businesses and consumers need. With its growing importance, the logistics industry strives to provide efficient and sustainable services through innovations and artificial intelligence are being used to optimize logistics networks, make transport more environmentally friendly, and more. Research and improvements are being undertaken in various domains, such as logistics network optimization and environmentally friendly transportation through technological innovation and artificial intelligence; however, there still needs to be more research in certain aspects of the logistics industry. In particular, devising an optimized stowage plan for vehicle carriers, considering various factors, involves a significant degree of complexity and remains an under-researched area. This paper studies the loading and unloading algorithms that enable to quickly and efficiently establish stowage plans for vehicle carriers, reflecting a variety of considerations and rules for stowage planning.

Life prediction of IGBT module for nuclear power plant rod position indicating and rod control system based on SDAE-LSTM

  • Zhi Chen;Miaoxin Dai;Jie Liu;Wei Jiang;Yuan Min
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3740-3749
    • /
    • 2024
  • To reduce the losses caused by aging failure of insulation gate bipolar transistor (IGBT), which is the core components of nuclear power plant rod position indicating and rod control (RPC) system. It is necessary to conduct studies on its life prediction. The selection of IGBT failure characteristic parameters in existing research relies heavily on failure principles and expert experience. Moreover, the analysis and learning of time-domain degradation data have not been fully conducted, resulting in low prediction efficiency as the monotonicity, time correlation, and poor anti-interference ability of extracted degradation features. This paper utilizes the advantages of the stacked denoising autoencoder(SDAE) network in adaptive feature extraction and denoising capabilities to perform adaptive feature extraction on IGBT time-domain degradation data; establishes a long-short-term memory (LSTM) prediction model, and optimizes the learning rate, number of nodes in the hidden layer, and number of hidden layers using the Gray Wolf Optimization (GWO) algorithm; conducts verification experiments on the IGBT accelerated aging dataset provided by NASA PCoE Research Center, and selects performance evaluation indicators to compare and analyze the prediction results of the SDAE-LSTM model, PSOLSTM model, and BP model. The results show that the SDAE-LSTM model can achieve more accurate and stable IGBT life prediction.

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks (안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석)

  • Yun, Min;Na, Hyoung-Jun;Lee, Mun-Kyu;Park, Kun-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.3-16
    • /
    • 2008
  • A Wireless Sensor Network (WSN for short) is a wireless network consisting of distributed small devices which are called sensor nodes or motes. Recently, there has been an extensive research on WSN and also on its security. For secure storage and secure transmission of the sensed information, sensor nodes should be equipped with cryptographic algorithms. Moreover, these algorithms should be efficiently implemented since sensor nodes are highly resource-constrained devices. There are already some existing algorithms applicable to sensor nodes, including public key ciphers such as TinyECC and standard block ciphers such as AES. Stream ciphers, however, are still to be analyzed, since they were only recently standardized in the eSTREAM project. In this paper, we implement over the MicaZ platform nine software-based stream ciphers out of the ten in the second and final phases of the eSTREAM project, and we evaluate their performance. Especially, we apply several optimization techniques to six ciphers including SOSEMANUK, Salsa20 and Rabbit, which have survived after the final phase of the eSTREAM project. We also present the implementation results of hardware-oriented stream ciphers and AES-CFB fur reference. According to our experiment, the encryption speeds of these software-based stream ciphers are in the range of 31-406Kbps, thus most of these ciphers are fairly acceptable fur sensor nodes. In particular, the survivors, SOSEMANUK, Salsa20 and Rabbit, show the throughputs of 406Kbps, 176Kbps and 121Kbps using 70KB, 14KB and 22KB of ROM and 2811B, 799B and 755B of RAM, respectively. From the viewpoint of encryption speed, the performances of these ciphers are much better than that of the software-based AES, which shows the speed of 106Kbps.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.