Sustainable industrial development which can minimize an ecological effect by the mankind exertion is recently interested due to an environmental contamination and a resource exhaustion problem. An eco-industrial park (EIP) is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. EIP developments which improve a production plant within an eco-friendly greenfield and design a new industrial ecosystem are accomplished recently, which can efficiently re-use the waste and resources from each company within EIP. In this review, the outside and domestic case studies of EIP and cornerstone technologies to develop the EIP, such as energy integration, waste reuse, mass flow analysis, water pinch, and life cycle assessment, are summarized.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.1
/
pp.141-148
/
2021
In some intersections or busy traffic roads, there are more pedestrians in a specific period of time, and there are many traffic accidents caused by road congestion. Especially at the intersection where there are schools nearby, it is particularly important to protect the traffic safety of students in busy hours. In the past, when designing traffic lights, the safety of pedestrians was seldom taken into account, and the identification of motor vehicles and traffic optimization were mostly studied. How to keep the road smooth as far as possible under the premise of ensuring the safety of pedestrians, especially students, will be the key research direction of this paper. This paper will focus on person, motorcycle, bicycle, car and bus recognition research. Through investigation and comparison, this paper proposes to use YOLO v4 network to identify the location and quantity of objects. YOLO v4 has the characteristics of strong ability of small target recognition, high precision and fast processing speed, and sets the data acquisition object to train and test the image set. Using the statistics of the accuracy rate, error rate and omission rate of the target in the video, the network trained in this paper can accurately and effectively identify persons, motorcycles, bicycles, cars and buses in the moving images.
In order to prevent overusing the fishing gear and to reduce discarded fishing gear, there is a need for a technique that can efficiently transmit the information including the type and location of the fishing gear and the user's real name to the fishing boat and the control center using IoT-based communication. In order to do this, it is necessary to be able to confirm the position information of a plurality of buoys that can be identified by the base stations on the land. In this paper, in order to service the maritime IoT communication system, we calculate the link budget between the land base station and the targets on the sea to derive the service coverage. To design a marine IoT radio network for building a fishing gear monitoring system, we calculate link budget for wireless service optimization at sea for NB-IoT using 1.8 GHz frequency band and LoRa service using 900 MHz frequency band. In addition, the link budget between the land base station and buoy, the link budget between the land base station and fishing boat are calculated and the results are analyzed.
Kim, Jeongsoo;Lee, Chan-Woo;Park, Seung-Hwa;Lee, Jong-Hyun;Hong, Chang-Hee
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.12
/
pp.320-330
/
2020
Fire is difficult to achieve good performance in image detection using deep learning because of its high irregularity. In particular, there is little data on fire detection in underground utility facilities, which have poor light conditions and many objects similar to fire. These make fire detection challenging and cause low performance of deep learning models. Therefore, this study proposed a fire detection model using deep learning and estimated the performance of the model. The proposed model was designed using a combination of a basic convolutional neural network, Inception block of GoogleNet, and Skip connection of ResNet to optimize the deep learning model for fire detection under underground utility facilities. In addition, a training technique for the model was proposed. To examine the effectiveness of the method, the trained model was applied to fire images, which included fire and non-fire (which can be misunderstood as a fire) objects under the underground facilities or similar conditions, and results were analyzed. Metrics, such as precision and recall from deep learning models of other studies, were compared with those of the proposed model to estimate the model performance qualitatively. The results showed that the proposed model has high precision and recall for fire detection under low light intensity and both low erroneous and missing detection capabilities for things similar to fire.
Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.
The study is to investigate research trends and knowledge structures in the Smart Farm field. To achieve the research purpose, keywords and the relationship among keywords were analyzed targeting 104 Korean academic journals related to the Smart Farm in KCI(Korea Citation Index), and topics were analyzed using the LDA Topic Modeling technique. As a result of the analysis, the main keywords in the Korean Smart Farm-related research field were 'environment', 'system', 'use', 'technology', 'cultivation', etc. The results of Degree, Betweenness, and Eigenvector Centrality were presented. There were 7 topics, such as 'Introduction analysis of Smart Farm', 'Eco-friendly Smart Farm and economic efficiency of Smart Farm', 'Smart Farm platform design', 'Smart Farm production optimization', 'Smart Farm ecosystem', 'Smart Farm system implementation', and 'Government policy for Smart Farm' in the results of Topic Modeling. This study will be expected to serve as basic data for policy development necessary to advance Korean Smart Farm research in the future by examining research trends related to Korean Smart Farm.
Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
International Journal of Computer Science & Network Security
/
v.21
no.11
/
pp.345-353
/
2021
Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.
Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
International conference on construction engineering and project management
/
2022.06a
/
pp.1243-1244
/
2022
In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.
Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.
In the development of clothing design through virtual simulation, it is essential to minimize the differences between the virtual and the real world as much as possible. The most critical task to enhance the similarity between virtual and real garments is to find simulation parameters that can closely emulate the physical properties of the actual fabric in use. The simulation parameter optimization process requires manual tuning by experts, demanding high expertise and a significant amount of time. Especially, considerable time is consumed in repeatedly running simulations to check the results of applying the tuned simulation parameters. Recently, to tackle this issue, artificial neural network learning models have been proposed that swiftly estimate the results of drape test simulations, which are predominantly used for parameter tuning. In these earlier studies, relatively simple linear stiffness models were used, and instead of estimating the entirety of the drape mesh, they estimated only a portion of the mesh and interpolated the rest. However, there is still a scarcity of research on non-linear stiffness models, which are commonly used in actual garment design. In this paper, we propose a learning model for estimating the results of drape simulations for non-linear stiffness models. Our learning model estimates the full high-resolution mesh model of drape. To validate the performance of the proposed method, experiments were conducted using three different drape test methods, demonstrating high accuracy in estimation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.