• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.028 seconds

A Study on the stock price prediction and influence factors through NARX neural network optimization (NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구)

  • Cheon, Min Jong;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.572-578
    • /
    • 2020
  • The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.

Energy Efficiency Enhancement of Macro-Femto Cell Tier (매크로-펨토셀의 에너지 효율 향상)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth generation (5G) wireless networks. The heterogeneous network considered consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (BSs). The stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi- tier cellular networks. The HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this paper, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power onsumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved the Karush Kuhn Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCNs scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes.

Visualization of Malwares for Classification Through Deep Learning (딥러닝 기술을 활용한 멀웨어 분류를 위한 이미지화 기법)

  • Kim, Hyeonggyeom;Han, Seokmin;Lee, Suchul;Lee, Jun-Rak
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.67-75
    • /
    • 2018
  • According to Symantec's Internet Security Threat Report(2018), Internet security threats such as Cryptojackings, Ransomwares, and Mobile malwares are rapidly increasing and diversifying. It means that detection of malwares requires not only the detection accuracy but also versatility. In the past, malware detection technology focused on qualitative performance due to the problems such as encryption and obfuscation. However, nowadays, considering the diversity of malware, versatility is required in detecting various malwares. Additionally the optimization is required in terms of computing power for detecting malware. In this paper, we present Stream Order(SO)-CNN and Incremental Coordinate(IC)-CNN, which are malware detection schemes using CNN(Convolutional Neural Network) that effectively detect intelligent and diversified malwares. The proposed methods visualize each malware binary file onto a fixed sized image. The visualized malware binaries are learned through GoogLeNet to form a deep learning model. Our model detects and classifies malwares. The proposed method reveals better performance than the conventional method.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.

Optimization of Z-R relationship in the summer of 2014 using a micro genetic algorithm (마이크로 유전알고리즘을 이용한 2014년 여름철 Z-R 관계식 최적화)

  • Lee, Yong Hee;Nam, Ji-Eun;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The Korea Meteorological Administration has operated the Automatic Weather Stations, of the average 13 km horizontal resolution, to observe rainfall. However, an additional RADAR network also has been operated in all-weather conditions, because AWS network could not observed rainfall over the sea. In general, the rain rate is obtained by estimating the relationship between the radar reflectivity (Z) and the rainfall (R). But this empirical relationship needs to be optimized on the rainfall over the Korean peninsula. This study was carried out to optimize the Z-R relationship in the summer of 2014 using a parallel Micro Genetic Algorithm. The optimized Z-R relationship, $Z=120R^{1.56}$, using a micro genetic algorithm was different from the various Z-R relationships that have been previously used. However, the landscape of the fitness function found in this study looked like a flat plateau. So there was a limit to the fine estimation including the complex development and decay processes of precipitation between the ground and an altitude of 1.5km.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

The Optimization of Hybrid BCI Systems based on Blind Source Separation in Single Channel (단일 채널에서 블라인드 음원분리를 통한 하이브리드 BCI시스템 최적화)

  • Yang, Da-Lin;Nguyen, Trung-Hau;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In the current study, we proposed an optimized brain-computer interface (BCI) which employed blind source separation (BBS) approach to remove noises. Thus motor imagery (MI) signal and steady state visual evoked potential (SSVEP) signal were easily to be detected due to enhancement in signal-to-noise ratio (SNR). Moreover, a combination between MI and SSVEP which is typically can increase the number of commands being generated in the current BCI. To reduce the computational time as well as to bring the BCI closer to real-world applications, the current system utilizes a single-channel EEG signal. In addition, a convolutional neural network (CNN) was used as the multi-class classification model. We evaluated the performance in term of accuracy between a non-BBS+BCI and BBS+BCI. Results show that the accuracy of the BBS+BCI is achieved $16.15{\pm}5.12%$ higher than that in the non-BBS+BCI by using BBS than non-used on. Overall, the proposed BCI system demonstrate a feasibility to be applied for multi-dimensional control applications with a comparable accuracy.

Load balancing Direction strategies in star network configurations (스타형 컴퓨터 네트워크의 부하균형방향 정책)

  • Im, Gyeong-Su;Kim, Su-Jeong;Kim, Jong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.427-437
    • /
    • 1994
  • Optimal static load balancing in star network configurations is considered. Three kinds of load balancing direction strategies are considered. First, a job arriving at the peripheral nodes may be processed either where it arrived(origin node) or transferred directly to central node Second, a job arriving at the central node may be processed there, or transferred to lightly loaded peripheral nodes. A nonlinear optimization problem is formulated. Using the optimal solution, an optimal load balancing algorithm is derived for the second load balancing strategy. Third a job arriving at the central node or a peripheral node may be processed either at origin node or transferred to another lightly loaded node (central or peripheral). A load balancing algorithm is derived for the third load balancing strategy. The effects of these three load balancing strategies are compared by numerical experiments. During the conduct of these in numerical experiments, several interesting phenomena were observed. The third load balancing strategy improved performance more than the first two other strategies. The second load balancing strategy, as a whole, resulted in only slightly improved performance. Finally, of the central node has larger processing power than the peripheral nodes, the first and third load balancing strategies produce equal performance improvement.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF