• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.033 seconds

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.

Community Detection using Closeness Similarity based on Common Neighbor Node Clustering Entropy

  • Jiang, Wanchang;Zhang, Xiaoxi;Zhu, Weihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2587-2605
    • /
    • 2022
  • In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.

MU-MIMO Scheduling using DNN-based Precoder with Limited Feedback (심층신경망 기반의 프리코딩 시스템을 활용한 다중사용자 스케줄링 기법에 관한 연구)

  • Kyeongbo Kong;Moonsik Min
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.141-144
    • /
    • 2023
  • Recently, a joint channel estimation, channel quantization, feedback, and precoding system based on deep-neural network (DNN) was proposed. The corresponding system achieved a joint optimization based on deep learning such that it achieved a higher sum rate than the existing codebook-based precoding systems. However, this DNN-based procoding system is not directly applicable for the environments with many users such that a specific user selection can potentially increase the sum rate of the system. Thus, in this letter, we study an appropriate user selection method suitable for DNN-based precoding.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

A study on Optimization of Using QoS and Ensuring the Security in IPv6 Multicast Network (IPv6 Multicast 네트워크에서 QoS 적용과 Security보장을 위한 최적화 연구)

  • Kim, Young-Rae;Lee, Hyo-Beom;Min, Sung-Gi
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.913-916
    • /
    • 2008
  • TPS(Triple Play Service)를 통한 IP-TV,인터넷, 전화 등이 통합되는 추세에서, IPv6 상용네트워크가 수 년 안에 구축될 필연성을 공감하고 있다. 그러나 [1] 현재 IP-TV 서비스에서 Delay, Jitter,전송장애등 QoS에 대한 사용자 불만이 계속 발생하고 있다. 또한 현재 서비스중지 (DoS : Denial of Service)를 유발하는 [2] 인터넷 침해 사고가 월 평균 2157건 이상 발생하는 등, Security Issue의 증가 문제가 지속 되고 있다. IPv4/IPv6 듀얼 스택 멀티 캐스트 네트워크를 구현하여, 라우팅, 멀티캐스트(PIM-SM), QoS, Security 이슈에 대한, 최적의 방안을 도출하여, 라우팅 구현시 IPv6 라우팅 프로토클 간에 재분배(Redistribution) 장애 해결책, IPv6 특성에 따른 멀티캐스트 그룹주소 지정시의 장애대책을 제시하였고, QoS 에서는 기존의 QoS 정책의 문제점과 IPv6의 고유한 패킷 구조의 장점을 활용한 Adaptive QoS 방법을 제시하고, IPv6 멀티캐스트 서비스 중지 공격 유형을 정의하여, 최적화된 IPv6 멀티캐스트 구성 모델을 제시 하였다. 결론적으로 구현된 시스템에서 IPv6 패킷 분석을 통해서 최적화된 경로 통신 및 차별화된 IPv6 패킷의 QoS 방안을 제시하였으며, 서비스 중지공격을 대응하는 Security 보장성을 갖고 있음을 검증하여, 향후 상용화된 IPv4/IPv6 네트워크 구현을 위한 최적화 방안을 제시 하였다.

THREE-STAGED RISK EVALUATION MODEL FOR BIDDING ON INTERNATIONAL CONSTRUCTION PROJECTS

  • Wooyong Jung;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.534-541
    • /
    • 2011
  • Risk evaluation approaches for bidding on international construction projects are typically partitioned into three stages: country selection, project classification, and bid-cost evaluation. However, previous studies are frequently under attack in that they have several crucial limitations: 1) a dearth of studies about country selection risk tailored for the overseas construction market at a corporate level; 2) no consideration of uncertainties for input variable per se; 3) less probabilistic approaches in estimating a range of cost variance; and 4) less inclusion of covariance impacts. This study thus suggests a three-staged risk evaluation model to resolve these inherent problems. In the first stage, a country portfolio model that maximizes the expected construction market growth rate and profit rate while decreasing market uncertainty is formulated using multi-objective genetic analysis. Following this, probabilistic approaches for screening bad projects are suggested through applying various data mining methods such as discriminant logistic regression, neural network, C5.0, and support vector machine. For the last stage, the cost overrun prediction model is simulated for determining a reasonable bid cost, while considering non-parametric distribution, effects of systematic risks, and the firm's specific capability accrued in a given country. Through the three consecutive models, this study verifies that international construction risk can be allocated, reduced, and projected to some degree, thereby contributing to sustaining stable profits and revenues in both the short-term and the long-term perspective.

  • PDF

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance

  • Jang-Hoon Oh;Hyug-Gi Kim;Kyung Mi Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.698-714
    • /
    • 2023
  • In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

A Review on Metabolic Pathway Analysis with Emphasis on Isotope Labeling Approach

  • Azuyuki, Shimizu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.237-251
    • /
    • 2002
  • The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production using Ralstonia eutropha and recombinant Escherichia coli, lactate production by recombinant Saccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeast Toluropsis glabrata, lysine production using Corynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/ or the change in the culture condition.