• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.04 seconds

A Random Deflected Subgradient Algorithm for Energy-Efficient Real-time Multicast in Wireless Networks

  • Tan, Guoping;Liu, Jianjun;Li, Yueheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4864-4882
    • /
    • 2016
  • In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

Network Coding Performance Analysis with Multicast Topology (Multicast Topology에서의 네트워크 코딩 성능 분석)

  • Lee, Mi-Sung;Balakannan, S.P.;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.30-35
    • /
    • 2010
  • Network coding is a new research area that may have interesting applications in practical networking systems. With network coding, intermediate nodes may send out packets that are linear combinations of previously received information. The exploration of numerical, theoretical and operational networking issues from new perspectives that consider coding at network nodes. We have presented a network coding approach which asymptotically achieves optimal capacity in multi-source multicast networks. Our analysis uses connections that we make between network coding. In this paper we analysed with and without network coding performance. Also we discussed the simulation results on network coding with linear optimization problem and it shows how network coding can be used.

A Study on Higher Level Representations of Network Models for Optical Fiber Telecommunication Networks Design (광통신망 설계를 위한 네트워크 모형의 상위수준 표현에 관한 연구)

  • Kim, Cheol-Su
    • Asia pacific journal of information systems
    • /
    • v.6 no.2
    • /
    • pp.125-148
    • /
    • 1996
  • This paper is primarily focused on the function of model management systems such as higher level representations and buildings of optimization models using them, especially in the area of the telecommunication network models. This research attempts to provide the model builders an intuitive language-namely higher level representation-using five distinctivenesses : Objective, Node, Link, Topological Constraint including five components, and Decision. The paper elaborates all components included in each of distinctivenesses extracted from structural characteristics of typical telecommunication network models. Higher level representations represented with five distinctivenesses should be converted into base level representations which are employed for semantic representations of linear and integer programming problems in knowledge: assisted optimization modeling system(UNIK-OPT). Furthermore, for formulating the network model using higher level representations, the reasoning process is proposed. A system called UNIK-NET is developed to implement the approach proposed in this research, and the system is illustrated with an example of the network model.

  • PDF

A ship control by fuzzy neutral network (FNN에 의한 선박의 제어)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1703_1704
    • /
    • 2009
  • Fuzzy neural ship controllers is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using simulink tools.

  • PDF

A study of improvement of control performance of ship by fuzzy neutral network (퍼지 신경회로망에 의한 선박의 제어성능 개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.671-672
    • /
    • 2008
  • Hybrid intelligent technique is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using Matlab.

  • PDF

Performance Comparison of Convolution Neural Network by Weight Initialization and Parameter Update Method1 (가중치 초기화 및 매개변수 갱신 방법에 따른 컨벌루션 신경망의 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • Deep learning has been used for various processing centered on image recognition. One core algorithms of the deep learning, convolutional neural network is an deep neural network that specialized in image recognition. In this paper, we use a convolutional neural network to classify forest insects and propose an optimization method. Experiments were carried out by combining two weight initialization and six parameter update methods. As a result, the Xavier-SGD method showed the highest performance with an accuracy of 82.53% in the 12 different combinations of experiments. Through this, the latest learning algorithms, which complement the disadvantages of the previous parameter update method, we conclude that it can not lead to higher performance than existing methods in all application environments.

Robust Capacity Planning in Network Coding under Demand Uncertainty

  • Ghasvari, Hossien;Raayatpanah, Mohammad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2840-2853
    • /
    • 2015
  • A major challenge in network service providers is to provide adequate resources in service level agreements based on forecasts of future demands. In this paper, we address the problem of capacity provisioning in a network subject to demand uncertainty such that a network coded multicast is applied as the data delivery mechanism with limited budget to purchase extra capacity. We address some particular type of uncertainty sets that obtain a tractable constrained capacity provisioning problem. For this reason, we first formulate a mathematical model for the problem under uncertain demand. Then, a robust optimization model is proposed for the problem to optimize the worst-case system performance. The robustness and effectiveness of the developed model are demonstrated by numerical results. The robust solution achieves more than 10% reduction and is better than the deterministic solution in the worst case.

Storage Allocation in Multi-level VOD Network Using Dynamic Programming (동적계획법을 이용한 다계층 VOD 망의 저장량 결정)

  • Kim, Yeo-Keun;Cho, Myoung-Rai;Kim, Jae-Yun
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.202-213
    • /
    • 1996
  • Video-on-demand is an interactive service that provides programs (movie, home shopping, etc.) to users connected to a network. This service will require high bandwidth network and video servers with a large amount of storage capacity. From the viewpoint of system analysis, there are optimization problems to be solved. In this paper, we present a dynamic programming method for allocating the storage for programs being served in a multi-level video-on-demand network. In the optimization of the network resource, we consider the three kinds of costs: installation cost for video servers, program storage cost, and transmission (or communication) cost. The factors related to the costs are investigated. An example is shown to illustrate the proposed method.

  • PDF