• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.03 seconds

Neural Network Based On-Line Efficiency Optimization Control of a VVVF-Induction Motor Drive (인공신경망을 이용한 VVVF-유도전동기 시스템의 실시간 운전효율 최적제어)

  • Lee, Seung-Chul;Choy, Ick;Kwon, Soon-Hak;Choi, Ju-Yeop;Song, Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.166-174
    • /
    • 1999
  • On-line efficiency optimization control of an induction motor drive using neural network is important from the v viewpoints of energy saving and controlling a nonlinear system whose charact81istics are not fully known. This paper p presents a neural networklongleftarrowbased on-line efficiency optimization control for an induction motor drive, which adopts an optimal slip an밍J.lar frequency control. In the proposed scheme, a neuro-controller provides minimal loss operating point i in the whole range of the measured input power. Both simulation and experimental results show that a considerable e energy saving is achieved compared with the conventional constant vlf ratio operation.

  • PDF

Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis- (Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로-)

  • Shin, Hyun-Gon;Park, Heekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

Efficiency Optimization Control of IPMSM Drive using multi HFC (다중 HFC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sun;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using multi hybrid fuzzy controller(HFC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on HFC using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi HFC. Also, this paper proposes speed control of IPMSM using HFC1, current control of HFC2-HFC3 and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HFC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Optimization of water quality monitoring stations using genetic algorithm, a case study, Sefid-Rud River, Iran

  • Asadollahfardi, Gholamreza;Heidarzadeh, Nima;Mosalli, Atabak;Sekhavati, Ali
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.87-107
    • /
    • 2018
  • Water quality monitoring network needs periodic evaluations based on environmental demands and financial constraints. We used a genetic algorithm to optimize the existing water quality monitoring stations on the Sefid-Rud River, which is located in the North of Iran. Our objective was to optimize the existing stations for drinking and irrigation purposes, separately. The technique includes two stages called data preparation and the optimization. On the data preparation stage, first the basin was divided into four sections and each section was consisted of some stations. Then, the score of each station was computed using the data provided by the water Research Institute of the Ministry of energy. After that, we applied a weighting method by providing questionnaires to ask the experts to define the significance of each parameter. In the next step, according to the scores, stations were prioritized cumulatively. Finally, the genetic algorithm was applied to identify the best combination. The results indicated that out of 21 existing monitoring stations, 14 stations should remain in the network for both irrigation and drinking purposes. The results also had a good compliance with the previous studies which used dynamic programming as the optimization technique.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Study on the Weight Optimization of Excavator Attachments Considering Durability (굴삭기 작업장치 내구 경량 최적화 기법 연구)

  • Kim, Pan-Young;Kim, Hyun-Gi;Park, Jin-Soo;Hwang, Jae-Bong;Song, Kyu-Sam
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.349-353
    • /
    • 2007
  • The main functions of excavator are mainly carried out by excavator attachments such as arm and boom. These components should be designed to be light as well as durable enough because their effects on the whole structure are significant. In this paper, an optimization procedure for lightweight design considering fatigue strength for excavator attachments is presented. The weight of attachments and allowable fatigue stresses at critical areas are used as objective function and constraints, respectively, in which design variables are the thickness of the plates of attachments. The simulated annealing search method is adopted for a global optimization solution. Besides, the response surface method using the artificial neural network is used to simulate constraint function for the sake of practical fast calculation. Some example case of optimization is presented here for a sample excavator. This weight optimization is expected to contribute to a considerable improvement of fuel efficiency of excavator.

  • PDF

Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design (항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용)

  • 전상욱;이동호;전용희;김정화
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.24-32
    • /
    • 2006
  • Using a deterministic design optimization, the effect of uncertainty can result in violation of constraints and deterioration of performances. For this reason, design optimization is required to guarantee reliability for constraints and ensure robustness for an objective function under uncertainty. Therefore, this study drew Monte Carlo Simulation(MCS) for the evaluation of reliability and robustness, and selected an artificial neural network as an approximate model that is suitable for MCS. Applying to the aero-structural optimization problem of aircraft wing, we can explore robuster optima satisfying the sigma level of reliability than the baseline.