• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.039 seconds

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

Query Optimization with Metadata Routing Tables on Nano-Q+ Sensor Network with Multiple Heterogeneous Sensors (다중 이기종 센서를 보유한 Nano-Q+ 기반 센서네트워크에서 메타데이타 라우팅 테이블을 이용한 질의 최적화)

  • Nam, Young-Kwang;Choe, Gui-Ja;Lee, Byoung-Dai;Kwak, Kwang-Woong;Lee, Kwang-Yong;Mah, Pyoung-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • In general, data communication among sensor nodes requires more energy than internal processing or sensing activities. In this paper, we propose a noble technique to reduce the number of packet transmissions necessary for sending/receiving queries/results among neighboring nodes with the help of context-aware routing tables. The important information maintained in the context-aware routing table is which physical properties can be measured by descendent nodes reachable from the current node. Based on the information, the node is able to eliminate unnecessary packet transmission by filtering out the child nodes for query dissemination or result relaying. The simulation results show that up to 80% of performance gains can be achieved with our technique.

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

The Constitutional Directions of Construction Information Management System Between Design and Construction in the Building Project (설계/시공간의 효율적인 정보통합관리를 위한 건설정보처리시스템 구축 방안)

  • Oh Seung-Jun;Lee Kyung-Kook;Chun Jae-Youl
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.464-467
    • /
    • 2002
  • In Korea construction project case, architectural construction project is curtailed production because information network process within multidisciplinary isn't smooth. Particularly, the construction is not insufficient about performance, cost and material, construction process, etc. in result various question arises because of design error in construction step. And various mistake is made because communication path within multidisciplinary isn't smooth in architectural design and design change process. This research proposed the optimization method of building system which is satisfied with performance of building, cost, constructability, and proposed the information management plan which is connected with that. And The construction information in this research is restricted to design/construction information which is considerate in design step.

  • PDF

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Fast Game Encoder Based on Scene Descriptor for Gaming-on-Demand Service (주문형 게임 서비스를 위한 장면 기술자 기반 고속 게임 부호화기)

  • Jeon, Chan-Woong;Jo, Hyun-Ho;Sim, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.849-857
    • /
    • 2011
  • Gaming on demand(GOD) makes people enjoy games by encoding and transmitting game screen at a server side, and decoding the video at a client side. In this paper, we propose a fast game video encoder for multiple users over network with low-powered devices. In the proposed system, the computational complexity of game encoders is reduced by using scene descriptors, which consists of an object motion vector, global motion, and scene change. With additional information from game engines, the proposed encoder does not need to perform various complexity processes such as motion estimation and ratedistortion optimization. The motion estimation and rate-distortion optimization skipped by scene descriptors. We found that the proposed method improved 192 % in terms of FPS, compared with x264 software. With partial assembly code, we also improved coding speed by 86 % in terms of FPS. We found that the proposed fast encoder could encode over 60 FPS for real-time GOD applications.

R-Trader: An Automatic Stock Trading System based on Reinforcement learning (R-Trader: 강화 학습에 기반한 자동 주식 거래 시스템)

  • 이재원;김성동;이종우;채진석
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.785-794
    • /
    • 2002
  • Automatic stock trading systems should be able to solve various kinds of optimization problems such as market trend prediction, stock selection, and trading strategies, in a unified framework. But most of the previous trading systems based on supervised learning have a limit in the ultimate performance, because they are not mainly concerned in the integration of those subproblems. This paper proposes a stock trading system, called R-Trader, based on reinforcement teaming, regarding the process of stock price changes as Markov decision process (MDP). Reinforcement learning is suitable for Joint optimization of predictions and trading strategies. R-Trader adopts two popular reinforcement learning algorithms, temporal-difference (TD) and Q, for selecting stocks and optimizing other trading parameters respectively. Technical analysis is also adopted to devise the input features of the system and value functions are approximated by feedforward neural networks. Experimental results on the Korea stock market show that the proposed system outperforms the market average and also a simple trading system trained by supervised learning both in profit and risk management.