• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.037 seconds

Systematic Approach to Involving the Tools of Digital Marketing as a Guarantee of the International Business Development

  • Chernenko, Oksana;Kovalchuk, Svitlana;Perevozova, Iryna;Fayvishenko, Diana;Zaburmekha, Yevgena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.311-317
    • /
    • 2022
  • The research is devoted to the substantiation of the system approach to the involvement of digital marketing tools as a guarantee of international business development. It is proved that digital marketing, as a type of marketing based on the use of digital technologies allows to make a profit, to promote the brand, as well as goods and services in the market. The digital marketing toolkit system is a set of elements with existing relationships that ensure the effectiveness of the entire digital marketing, which in total is greater than its individual components. The implementation of a systems approach involves the implementation of the philosophy of digital marketing in general, its functions in the form of systems analysis, formation of strategic development goals and entry and promotion in the international market, preparation and implementation of tactical and strategic development plans.The use of such digital marketing tools as: content marketing, social media marketing, Email-marketing, targeted advertising, contextual advertising, media advertising, Search Engine Optimization, affiliate programs and the company's website is analyzed in detail.

Scalable Blockchain Storage Model Based on DHT and IPFS

  • Chen, Lu;Zhang, Xin;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2286-2304
    • /
    • 2022
  • Blockchain is a distributed ledger that combines technologies such as cryptography, consensus mechanism, peer-to-peer transmission, and time stamping. The rapid development of blockchain has attracted attention from all walks of life, but storage scalability issues have hindered the application of blockchain. In this paper, a scalable blockchain storage model based on Distributed Hash Table (DHT) and the InterPlanetary File System (IPFS) was proposed. This paper introduces the current research status of the scalable blockchain storage model, as well as the basic principles of DHT and the InterPlanetary File System. The model construction and workflow are explained in detail. At the same time, the DHT network construction mechanism, block heat identification mechanism, new node initialization mechanism, and block data read and write mechanism in the model are described in detail. Experimental results show that this model can reduce the storage burden of nodes, and at the same time, the blockchain network can accommodate more local blocks under the same block height.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Access efficiency of small sized files in Big Data using various Techniques on Hadoop Distributed File System platform

  • Alange, Neeta;Mathur, Anjali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.359-364
    • /
    • 2021
  • In recent years Hadoop usage has been increasing day by day. The need of development of the technology and its specified outcomes are eagerly waiting across globe to adopt speedy access of data. Need of computers and its dependency is increasing day by day. Big data is exponentially growing as the entire world is working in online mode. Large amount of data has been produced which is very difficult to handle and process within a short time. In present situation industries are widely using the Hadoop framework to store, process and produce at the specified time with huge amount of data that has been put on the server. Processing of this huge amount of data having small files & its storage optimization is a big problem. HDFS, Sequence files, HAR, NHAR various techniques have been already proposed. In this paper we have discussed about various existing techniques which are developed for accessing and storing small files efficiently. Out of the various techniques we have specifically tried to implement the HDFS- HAR, NHAR techniques.

A Study on the Optimization of Convolution Operation Speed through FFT Algorithm (FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

Enhanced CNN Model for Brain Tumor Classification

  • Kasukurthi, Aravinda;Paleti, Lakshmikanth;Brahmaiah, Madamanchi;Sree, Ch.Sudha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.143-148
    • /
    • 2022
  • Brain tumor classification is an important process that allows doctors to plan treatment for patients based on the stages of the tumor. To improve classification performance, various CNN-based architectures are used for brain tumor classification. Existing methods for brain tumor segmentation suffer from overfitting and poor efficiency when dealing with large datasets. The enhanced CNN architecture proposed in this study is based on U-Net for brain tumor segmentation, RefineNet for pattern analysis, and SegNet architecture for brain tumor classification. The brain tumor benchmark dataset was used to evaluate the enhanced CNN model's efficiency. Based on the local and context information of the MRI image, the U-Net provides good segmentation. SegNet selects the most important features for classification while also reducing the trainable parameters. In the classification of brain tumors, the enhanced CNN method outperforms the existing methods. The enhanced CNN model has an accuracy of 96.85 percent, while the existing CNN with transfer learning has an accuracy of 94.82 percent.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Hierarchical Location Mobility Management using MobilityManagement Points in IP networks

  • Park, Chul Ho;Oh, Sang Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1069-1074
    • /
    • 2022
  • IP mobility can be handled in different layers of the protocol. Mobile IP has been proposed to handle the mobility of Internet hosts in the network layer. Recently, a new method based on the SIGMA mobility architecture has been proposed to support mobility management with reduced packet loss and latency. The location management structure is not suitable for frequent mobile handover due to the high mobility of the user with this transport layer solution. In this paper, we propose a location management optimization method in a mobile communication network by applying hierarchical location management using MMPs(Mobility Management Points) for transport layer mobility management. Therefore, we propose an efficient hierarchical mobility management structure even between heterogeneous wireless networks using MMPs for the probability that a mobile terminal can change multiple location areas between two messages and calls. The proposed method shows reduction in location update cost and data retrieval cost using MMPs, and as opposed to mobility appearing in time intervals with the minimum cost required to reach 90% of the stabilized cost, the mobility location update search, location It was found that the message processing cost per area was reduced.