• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.029 seconds

A study of Modeling and Simulation for the Availability Optimization of Cloud Computing Service (클라우드 컴퓨팅 서비스의 가용성 최적화를 위한 모델링 및 시뮬레이션)

  • Jang, Eun-Young;Park, Choon-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Cloud computing emerges as a new paradigm for deploying, managing and offering IT resources as a service anytime, anywhere on any devices. Cloud computing data center stores many IT resources through resource integration. So cloud computing system has to be designed by technology and policy to make effective use of IT resources. In other words, cloud vendor has to provide high quality services to all user and mitigate the dissipation of IT resources. However, vendors need to predict the performance of cloud services and the use of IT resources before releasing cloud service. For solving the problem, this research presents cloud service modeling on network environment and evaluation index for availability optimization of cloud service. We also study how to optimize an amount of requested cloud service and performance of datacenter using CloudSim toolkit.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach I : Simulation System & Modeling for Optimization (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어 I : 시뮬레이션 시스템 개발 및 최적화를 위한 모델링)

  • Cho, Ki-Yong;Bae, Chul-Ho;Kim, Hyun-Jun;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Freeway corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. The design of experiment, neural network, and simulated annealing are used for optimization.

MMJoin: An Optimization Technique for Multiple Continuous MJoins over Data Streams (데이타 스트림 상에서 다중 연속 복수 조인 질의 처리 최적화 기법)

  • Byun, Chang-Woo;Lee, Hun-Zu;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Join queries having heavy cost are necessary to Data Stream Management System in Sensor Network where plural short information is generated. It is reasonable that each join operator has a sliding-window constraint for preventing DISK I/O because the data stream represents the infinite size of data. In addition, the join operator should be able to take multiple inputs for overall results. It is possible for the MJoin operator with sliding-windows to do so. In this paper, we consider the data stream environment where multiple MJoin operators are registered and propose MMJoin which deals with issues of building and processing a globally shared query considering characteristics of the MJoin operator with sliding-windows. First, we propose a solution of building the global shared query execution plan. Second, we solved the problems of updating a window size and routing for a join result. Our study can be utilized as a fundamental research for an optimization technique for multiple continuous joins in the data stream environment.

Performance Verification of Deep Learning based Transmit Power Control (딥러닝 기반 송신전력 조절방안의 성능검증)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2019
  • Recently, the deep learning technology has gained lots of attention which leads to its application to various fields. Especially, there are recent attempts to overcome the limit of wireless communications systems through the use of the deep learning. In this paper, we have verified the performance of deep learning based transmit power control scheme. Unlike previous transmit power control schemes where the optimal transmit power is derived by solving the optimization problem explicitly, in the deep learning based transmit power control, the general solver for the optimization problem is derived through the deep neural network (DNN). Especially, by using the spectral efficiency as the loss function of DNN, the training can be performed without needing labels. Through simulation based on Tensorflow, we confirm that the transmit power control based on deep learning can achieve the optimal performance while reducing the computational complexity by 1/200.

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation (수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발)

  • Kim, Jinju;Bang, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.

Optimization of Hydrogen Production Process using 50 Nm3/h Biogas (50 Nm3/h급 바이오가스 직접 이용 수소 생산 공정 최적화)

  • Gi Hoon Hong;DongKyu Lee;Hyeong Rae Kim;SangYeon Hwang;HyoungWoon Song;SungJun Ahn;SungWon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.44-52
    • /
    • 2024
  • This study presents a novel approach to hydrogen production by biogas from organic waste without CO2 removal. A process model was developed to reduce the costs associated with biogas pretreatment and purification processes. Through optimization of heat exchange networks, the simulation aimed to minimize process costs, maximizing hydrogen production and flue gas temperature. The results reveal that the most efficient process model maximizes the flue gas temperature while following the constraint of the number of heat exchangers. These findings hold promise for contributing to the expansion of "Biogas-to-clean hydrogen" energy conversion technology.

Research on the Performance Optimization of HR-Net for Spinal Region Segmentation in Whole Spine X-ray Images (Whole Spine X-ray 영상에서 척추 영역 분할을 위한 HR-Net 성능 최적화에 관한 연구)

  • Han Beom Yu;Ho Seong Hwang;Dong Hyun Kim;Hee Jue Oh;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.139-147
    • /
    • 2024
  • This study enhances AI algorithms for extracting spinal regions from Whole Spine X-rays, aiming for higher accuracy while minimizing learning and detection times. Whole Spine X-rays, critical for diagnosing conditions such as scoliosis and kyphosis, necessitate precise differentiation of spinal contours. The conventional manual methodology encounters challenge due to the overlap of anatomical structures, prompting the integration of AI to overcome these limitations and enhance diagnostic precision. In this study, 1204 AP and 500 LAT Whole Spine X-ray images were meticulously labeled, spanning the third cervical to the fifth lumbar vertebrae. We based our efforts on the HR-Net algorithm, which exhibited the highest accuracy, and proceeded to simplify its network architecture and enhance the block structure for optimization. The optimized HR-Net algorithm demonstrates an improvement, increasing accuracy by 2.98% for the AP dataset and 1.59% for the LAT dataset compared to its original formulation. Additionally, the modification resulted in a substantial reduction in learning time by 70.06% for AP images and 68.43% for LAT images, along with a decrease in detection time by 47.18% for AP and 43.07% for LAT images. The time taken per image for detection was also reduced by 47.09% for AP and 43.07% for LAT images. We suggest that the application of the proposed HR-Net in this study can lead to more accurate and efficient extraction of spinal regions in Whole Spine X-ray images. This can become a crucial tool for medical professionals in the diagnosis and treatment of spinal-related conditions, and it will serve as a foundation for future research aimed at further improving the accuracy and speed of spinal region segmentation.

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization (순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘)

  • Joonho Kim;Geonju Chae;Jaemin Park;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-119
    • /
    • 2023
  • The technology that recognizes a soldier's motion and movement status has recently attracted large attention as a combination of wearable technology and artificial intelligence, which is expected to upend the paradigm of troop management. The accuracy of state determination should be maintained at a high-end level to make sure of the expected vital functions both in a training situation; an evaluation and solution provision for each individual's motion, and in a combat situation; overall enhancement in managing troops. However, when input data is given as a timer series or sequence, existing feedforward networks would show overt limitations in maximizing classification performance. Since human behavior data (3-axis accelerations and 3-axis angular velocities) handled for military motion recognition requires the process of analyzing its time-dependent characteristics, this study proposes a high-performance data-driven classifier which utilizes the long-short term memory to identify the order dependence of acquired data, learning to classify eight representative military operations (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). Since the accuracy is highly dependent on a network's learning conditions and variables, manual adjustment may neither be cost-effective nor guarantee optimal results during learning. Therefore, in this study, we optimized hyperparameters using Bayesian optimization for maximized generalization performance. As a result, the final architecture could reduce the error rate by 62.56% compared to the existing network with a similar number of learnable parameters, with the final accuracy of 98.39% for various military operations.