• Title/Summary/Keyword: network module

Search Result 1,437, Processing Time 0.029 seconds

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

Implementation and performance evaluation of the communications module of TNAS in the advanced CPS (대용량 통신처리시스템의 전화망 정합 장치의 통신 모듈 구현 및 성능 분석)

  • 김건석;조평동
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.9-18
    • /
    • 1997
  • In this paper, we implemented the communication module in the Telephone Network Access Subsystem(TNAS) of the Advanced Communications Processing System(ACPS). We defined some kinds of communication tasks and related resources like several queues which are executed in real-time operating system, and implemented the procedures for processing the user information. Through traffic modeling and simulation, the performance of the Service Processing board Assembly(SPA) is evaluated in the aspets of system utilization and buffer size. The ACPS should accommodate various public networks such as public switch telephone network, packet switchen data network, frame realy netork, and ATM network. The communications module proposed in this paper could be used inthe interface beween the SPA and the High Speed Network Adaptor of other network interface subsystems.

  • PDF

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Mobile robot control by MNN using optimal EN (최적 EN를 사용한 MNN에 의한 Mobile Robot제어)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2003
  • Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot. In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.

ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining (연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2287-2297
    • /
    • 2007
  • The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.

Single-channel Demodulation Algorithm for Non-cooperative PCMA Signals Based on Neural Network

  • Wei, Chi;Peng, Hua;Fan, Junhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3433-3446
    • /
    • 2019
  • Aiming at the high complexity of traditional single-channel demodulation algorithm for PCMA signals, a new demodulation algorithm based on neural network is proposed to reduce the complexity of demodulation in the system of non-cooperative PCMA communication. The demodulation network is trained in this paper, which combines the preprocessing module and decision module. Firstly, the preprocessing module is used to estimate the initial parameters, and the auxiliary signals are obtained by using the information of frequency offset estimation. Then, the time-frequency characteristic data of auxiliary signals are obtained, which is taken as the input data of the neural network to be trained. Finally, the decision module is used to output the demodulated bit sequence. Compared with traditional single-channel demodulation algorithms, the proposed algorithm does not need to go through all the possible values of transmit symbol pairs, which greatly reduces the complexity of demodulation. The simulation results show that the trained neural network can greatly extract the time-frequency characteristics of PCMA signals. The performance of the proposed algorithm is similar to that of PSP algorithm, but the complexity of demodulation can be greatly reduced through the proposed algorithm.

Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain (웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크)

  • Jun Young, Park;Sang In, Lee;Il Kyu, Eom
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Using Bluetooth Module for Real-time Image Surveillance System (Bluetooth Module을 이용한 실시간 영상감시 시스템)

  • Seo, Yoon-Seok;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.337-339
    • /
    • 2005
  • The demand for a real-time image surveillance system using network camera server is increasing as the network infra has been grown and digital video compression techniques have been developed. The image surveillance system using network camera server has several merits compared to existing real-time image surveillance system using CCTV. It would be more convenient if wireless realtime image transmission were possible. In this paper, a bluetooth module is designed and implemented for a real-time image surveillance system to send and receive informations wirelessly. It may simplify the system development procedures and increase the productivity by low power consumption, low cost, and simple wireless installation. A scatter-net formation is proposed using dynamic and distributed algorithm so that the network connection is reliable.

  • PDF

Development of an Integrated Packet Voice/Data Terminal (패킷 음성/데이터 집적 단말기의 개발)

  • 전홍범;은종관;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.2
    • /
    • pp.171-181
    • /
    • 1988
  • In this study, a packet voice/data terminal(PVDT) that services both voice and data in the packet-switched network is implemented. The software structure of the PVDT is designed according to the OSI 7 layer architecture. The discrimination of voice and data is made in the link layer. Voice packets have priority over data packets in order to minimize the transmission delay, and are serviced by a simple protocol so that the overhead arising form the retransmission of packets may be minimized. The hardware structure of the PVDT is divided into five modules; a master control module, a speech proessing module, a speech activity detection module, a telephone interface module, and an input/output interface module. In addition to the hardware implementation, the optimal reconstruction delay of voice packets to reduce the influence of delay variance is analyzed.

  • PDF

A Spiking Neural Network for Autonomous Search and Contour Tracking Inspired by C. elegans Chemotaxis and the Lévy Walk

  • Chen, Mohan;Feng, Dazheng;Su, Hongtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2846-2866
    • /
    • 2022
  • Caenorhabditis elegans exhibits sophisticated chemotaxis behavior through two parallel strategies, klinokinesis and klinotaxis, executed entirely by a small nervous circuit. It is therefore suitable for inspiring fast and energy-efficient solutions for autonomous navigation. As a random search strategy, the Lévy walk is optimal for diverse animals when foraging without external chemical cues. In this study, by combining these biological strategies for the first time, we propose a spiking neural network model for search and contour tracking of specific concentrations of environmental variables. Specifically, we first design a klinotaxis module using spiking neurons. This module works in conjunction with a klinokinesis module, allowing rapid searches for the concentration setpoint and subsequent contour tracking with small deviations. Second, we build a random exploration module. It generates a Lévy walk in the absence of concentration gradients, increasing the chance of encountering gradients. Third, considering local extrema traps, we develop a termination module combined with an escape module to initiate or terminate the escape in a timely manner. Experimental results demonstrate that the proposed model integrating these modules can switch strategies autonomously according to the information from a single sensor and control steering through output spikes, enabling the model worm to efficiently navigate across various scenarios.