• Title/Summary/Keyword: network module

Search Result 1,437, Processing Time 0.027 seconds

Innovative Technology of Teaching Moodle in Higher Pedagogical Education: from Theory to Pactice

  • Iryna, Rodionova;Serhii, Petrenko;Nataliia, Hoha;Kushevska, Natalia;Tetiana, Siroshtan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.153-162
    • /
    • 2022
  • Relevance. Innovative activities in education should be aimed at ensuring the comprehensive development of the individual and professional development of students. The main idea of modular technology is that the student should learn by himself, and the teacher manages his learning activities. The advantage of modular technology is the ability of the teacher to design the study of the material in the most interesting and accessible forms for this part of the study group and at the same time achieve the best learning results. Innovative Moodle technology. it is gaining popularity every day, significantly expanding the space of teaching and learning, allowing students to study inter-faculty university programs in depth. The purpose of this study is to assess the quality of implementation of the e-learning system Moodle. The study was conducted at the South Ukrainian National Pedagogical University named after K. D. Ushinsky in order to identify barriers to the effective implementation of innovative distance learning technologies Moodle and introduce a new model that will have a positive impact on the development of e-learning. Methodology. The paper used a combination of theoretical and empirical research methods. These include: scientific analysis of sources on this issue, which allowed us to formulate the initial provisions of the study; analysis of the results of students 'educational activities; pedagogical experiment; questionnaires; monitoring of students' activities in practical classes. Results. This article evaluates the implementation of the principles of distance learning in the process of teaching and learning at the University in terms of quality. The experiment involved 1,250 students studying at the South Ukrainian National Pedagogical University named after K. D. Ushinsky. The survey helped to identify the main barriers to the effective implementation of modern distance learning technologies in the educational process of the University: the lack of readiness of teachers and parents, the lack of necessary skills in applying computer systems of online learning, the inability to interact with the teaching staff and teachers, the lack of a sufficient number of academic consultants online. In addition, internal problems are investigated: limited resources, unevenly distributed marketing advantages, inappropriate administrative structure, and lack of innovative physical capabilities. The article allows us to solve these problems by gradually implementing a distance learning model that is suitable for any university, regardless of its specialization. The Moodle-based e-learning system proposed in this paper was designed to eliminate the identified barriers. Models for implementing distance learning in the learning process were built according to the CAPDM methodology, which helps universities and other educational service providers develop and manage world-class online distance learning programs. Prospects for further research focus on evaluating students' knowledge and abilities over the next six months after the introduction of the proposed Moodle-based program.

Training of a Siamese Network to Build a Tracker without Using Tracking Labels (샴 네트워크를 사용하여 추적 레이블을 사용하지 않는 다중 객체 검출 및 추적기 학습에 관한 연구)

  • Kang, Jungyu;Song, Yoo-Seung;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.274-286
    • /
    • 2022
  • Multi-object tracking has been studied for a long time under computer vision and plays a critical role in applications such as autonomous driving and driving assistance. Multi-object tracking techniques generally consist of a detector that detects objects and a tracker that tracks the detected objects. Various publicly available datasets allow us to train a detector model without much effort. However, there are relatively few publicly available datasets for training a tracker model, and configuring own tracker datasets takes a long time compared to configuring detector datasets. Hence, the detector is often developed separately with a tracker module. However, the separated tracker should be adjusted whenever the former detector model is changed. This study proposes a system that can train a model that performs detection and tracking simultaneously using only the detector training datasets. In particular, a Siam network with augmentation is used to compose the detector and tracker. Experiments are conducted on public datasets to verify that the proposed algorithm can formulate a real-time multi-object tracker comparable to the state-of-the-art tracker models.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.

GIS based Development of Module and Algorithm for Automatic Catchment Delineation Using Korean Reach File (GIS 기반의 하천망분석도 집수구역 자동 분할을 위한 알고리듬 및 모듈 개발)

  • PARK, Yong-Gil;KIM, Kye-Hyun;YOO, Jae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.126-138
    • /
    • 2017
  • Recently, the national interest in environment is increasing and for dealing with water environment-related issues swiftly and accurately, the demand to facilitate the analysis of water environment data using a GIS is growing. To meet such growing demands, a spatial network data-based stream network analysis map(Korean Reach File; KRF) supporting spatial analysis of water environment data was developed and is being provided. However, there is a difficulty in delineating catchment areas, which are the basis of supplying spatial data including relevant information frequently required by the users such as establishing remediation measures against water pollution accidents. Therefore, in this study, the development of a computer program was made. The development process included steps such as designing a delineation method, and developing an algorithm and modules. DEM(Digital Elevation Model) and FDR(Flow Direction) were used as the major data to automatically delineate catchment areas. The algorithm for the delineation of catchment areas was developed through three stages; catchment area grid extraction, boundary point extraction, and boundary line division. Also, an add-in catchment area delineation module, based on ArcGIS from ESRI, was developed in the consideration of productivity and utility of the program. Using the developed program, the catchment areas were delineated and they were compared to the catchment areas currently used by the government. The results showed that the catchment areas were delineated efficiently using the digital elevation data. Especially, in the regions with clear topographical slopes, they were delineated accurately and swiftly. Although in some regions with flat fields of paddles and downtowns or well-organized drainage facilities, the catchment areas were not segmented accurately, the program definitely reduce the processing time to delineate existing catchment areas. In the future, more efforts should be made to enhance current algorithm to facilitate the use of the higher precision of digital elevation data, and furthermore reducing the calculation time for processing large data volume.

Development of JPEG2000 Viewer for Mobile Image System (이동형 의료영상 장치를 위한 JPEG2000 영상 뷰어 개발)

  • 김새롬;정해조;강원석;이재훈;이상호;신성범;유선국;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.

  • PDF

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Transcriptome Analysis of Longissimus Tissue in Fetal Growth Stages of Hanwoo (Korean Native Cattle) with Focus on Muscle Growth and Development (한우 태아기 6, 9개월령 등심 조직의 전사체 분석을 통한 근생성 및 지방생성 관여 유전자 발굴)

  • Jeong, Taejoon;Chung, Ki-Yong;Park, Woncheol;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Kwon, Eung-Gi;Ahn, Jun-Sang;Park, Mi-Rim;Lee, Jiwoong;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • The prenatal period in livestock animals is crucial for meat production because net increase in the number of muscle fibers is finished before birth. However, there is no study on the growth and development mechanism of muscles in Hanwoo during this period. Therefore, to find candidate genes involved in muscle growth and development during this period in Hanwoo, mRNA expression data of longissimus in Hanwoo at 6 and 9 months post-conceptional age (MPA) were analyzed. We independently identified differentially expressed genes (DEGs) using DESeq2 and edgeR which are R software packages, and considered the overlaps of the results as final-DEGs to use in downstream analysis. The DEGs were classified into several modules using WGCNA then the modules' functions were analyzed to identify modules which involved in myogenesis and adipogenesis. Finally, the hub genes which had the highest WGCNA module membership among the top 10% genes of the STRING network maximal clique centrality were identified. 913(6 MPA specific DEGs) and 233(9 MPA specific DEGs) DEGs were figured out, and these were classified into five and two modules, respectively. Two of the identified modules'(one was in 6, and another was in 9 MPA specific modules) functions was found to be related to myogenesis and adipogenesis. One of the hub genes belonging to the 6 MPA specific module was axin1 (AXIN1) which is known as an inhibitor of Wnt signaling pathway, another was succinate-CoA ligase ADP-forming beta subunit (SUCLA2) which is known as a crucial component of citrate cycle.