• Title/Summary/Keyword: network localization

Search Result 449, Processing Time 0.029 seconds

Localization on WSN Using Fuzzy Model and Kalman Filter (퍼지 모델링과 칼만 필터를 이용한 WSN에서의 위치 측정)

  • Kim, Jong-Seon;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2047-2051
    • /
    • 2009
  • In this paper, we propose the localization method on WSN(Wireless Sensor Network) using fuzzy model and Kalman filter. The proposed method is as follows: First, we estimate the distance of RSSI(Receive Signal Strength Index) by using fuzzy model in order to minimize the distance error. Second, we use a triangulation measurement for estimating the localization. And then, we minimize the localization error using a Kalman filter. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot

  • Sohn, Sook-Yung;Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.831-833
    • /
    • 2004
  • In this paper, an obstacle avoidance algorithm is proposed for a network-based robot considering network delay by distribution. The proposed algorithm is based on the VFH(Vector Field Histogram) algorithm, and for the network-based robot system, in which it is assumed robot localization information is transmitted through network communication. In this paper, target vector for the VFH algorithm is estimated through the robot localization information and the measurement of its delay by distribution. The delay measurement is performed by time-stamp method. To synchronize all local clocks of the nodes distributed on the network, a global clock synchronization method is adopted. With the delay measurement, the robot localization estimation is performed by calculating the kinematics of the robot. The validation of the proposed algorithm is performed through the performance comparison of the obstacle avoidance between the proposed algorithm and the existing VFH algorithm on the network-based autonomous mobile robot.

  • PDF

Optimization of the Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화)

  • 김성주;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

Infrastructure-based Localization System using Underwater Wireless Sensor Network (구조화된 공간에서의 수중 무선 센서 네트워크를 이용한 위치 추정 시스템)

  • Park, Dae-Gil;Kwak, Kyung-Min;Chung, Wan-Kyun;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.699-705
    • /
    • 2012
  • In this paper, an infrastructure-based localization method using underwater wireless sensor network (UWSN) is addressed. A localization using the UWSN is necessary to widen the usage of underwater applications, however it is very difficult to establish the UWSN due to the restrictions of water. In this paper, to extend the usage of UWSN at the infrastructure, we propose a sophisticated UWSN localization method using the Received Signal Strength Indicator (RSSI) of the electromagnetic waves. During the electromagnetic waves propagating in underwater, there arises a lot of attenuation according to the distance, while the attenuation shows uniformity according to the distance. Using this characteristics, the localization system in underwater infrastructure is proposed and the experimental results show the effectiveness.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Artificial Intelligence-Based Breast Nodule Segmentation Using Multi-Scale Images and Convolutional Network

  • Quoc Tuan Hoang;Xuan Hien Pham;Anh Vu Le;Trung Thanh Bui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.678-700
    • /
    • 2023
  • Diagnosing breast diseases using ultrasound (US) images remains challenging because it is time-consuming and requires expert radiologist knowledge. As a result, the diagnostic performance is significantly biased. To assist radiologists in this process, computer-aided diagnosis (CAD) systems have been developed and used in practice. This type of system is used not only to assist radiologists in examining breast ultrasound images (BUS) but also to ensure the effectiveness of the diagnostic process. In this study, we propose a new approach for breast lesion localization and segmentation using a multi-scale pyramid of the ultrasound image of a breast organ and a convolutional semantic segmentation network. Unlike previous studies that used only a deep detection/segmentation neural network on a single breast ultrasound image, we propose to use multiple images generated from an input image at different scales for the localization and segmentation process. By combining the localization/segmentation results obtained from the input image at different scales, the system performance was enhanced compared with that of the previous studies. The experimental results with two public datasets confirmed the effectiveness of the proposed approach by producing superior localization/segmentation results compared with those obtained in previous studies.

Four Anchor Sensor Nodes Based Localization Algorithm over Three-Dimensional Space

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 2012
  • Over a wireless sensor network (WSN), accurate localization of sensor nodes is an important factor in enhancing the association between location information and sensory data. There are many research works on the development of a localization algorithm over three-dimensional (3D) space. Recently, the complexity-reduced 3D trilateration localization approach (COLA), simplifying the 3D computational overhead to 2D trilateration, was proposed. The method provides proper accuracy of location, but it has a high computational cost. Considering practical applications over resource constrained devices, it is necessary to strike a balance between accuracy and computational cost. In this paper, we present a novel 3D localization method based on the received signal strength indicator (RSSI) values of four anchor nodes, which are deployed in the initial setup process. This method provides accurate location estimation results with a reduced computational cost and a smaller number of anchor nodes.