• 제목/요약/키워드: network interpolation

Search Result 209, Processing Time 0.024 seconds

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

Merging of multiple resolution-based precipitation data using super resolution convolution neural network (Super Resolution Convolutional Neural Network(SRCNN)를 이용한 다중 해상도 기반의 강수 데이타 병합)

  • Gyu-Ho Noh;Kuk-Hyun Ahn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.121-121
    • /
    • 2023
  • 다수의 서로 다른 해상도의 자료를 병합(Merge)하는 것은 강수 자료 사용에 중요한 절차 중 하나이다. 강수 자료는 다수의 소스(관측소, 레이더, 위성 등)에서 관측 자료를 제공한다. 연구자들은 각 원본 자료의 장점을 취하고 단점을 보완하기 위해 다중소스 기반의 재분석 강수 자료를 제작하여 사용하고 있다. 기존의 방법은 자료를 병합하기 위해 서로 다른 공간적 특성을 갖는 자료들을 공간적으로 동일한 위치로 보간(Interpolation) 하는 과정이 필요하다. 하지만 보간 절차는 원본자료에 인위적인 변형을 주기 때문에 많은 오차(Error)를 발생시키는 것으로 알려져 있다. 따라서 본 연구는 병합 과정에서 보간 절차를 제외하고 원본 해상도 자료를 그대로 입력하기 위해 머신 러닝 방법의 하나인 Super resolution convolutional neural network(SRCNN)에 기반한 병합 방법을 제안하고자 한다. 이 방법은 원본 자료의 영향을 모델이 직접 취사선택하여 최종 자료에 도달하기 때문에 병합 과정의 오류를 줄일 수 있을 것으로 기대된다.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

Modelling of the noise-added saturated steam table using neural networks (노이즈가 포함된 포화증기표의 신경회로망 모델링)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.413-418
    • /
    • 2011
  • The thermodynamic properties of steam table are obtained by measurement or approximate calculation under appropriate assumptions. Therefore they are supposed to have basic measurement errors. And thermodynamic properties should be modeled through function approximation for using in numerical analysis. In order to make noised thermodynamic properties corresponding to measurement errors, random numbers are generated, adjusted to appropriate magnitudes and added to original thermodynamic properties. Both neural networks and quadratic spline interpolation method are introduced for function approximation of these modified thermodynamic properties in the saturated water based on pressure and temperature. In analysis spline interpolation method gives much less relative errors than neural networks at both ends of data. Excluding the both ends of data, the relative errors of neural networks is generally within ${\pm}0.2%$ and those of spline interpolation method within ${\pm}0.5$~1.5%. This means that the neural networks give smaller relative errors compared with quadratic spline interpolation method within range of use. From this fact it was confirmed that the neural networks trace the original values better than the quadratic interpolation method and neural networks are more appropriate method in modelling the saturated steam table.

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF

Modelling the wide temperature range of steam table using the neural networks (신경회로망을 사용한 넓은 온도 범위의 증기표 모델링)

  • Lee, Tae-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2008-2013
    • /
    • 2006
  • In numerical analysis on evaluating the thermal performance of the thermal equipment, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table itself cannot be used without modelling. In this study applicability of neural networks in modelling the wide temperature range of wet saturated vapor region was examined. the multi-layer neural network consists of a input layer with 1 node, two hidden layers with 10 and 20 nodes respectively and a output layer with 6 nodes. Quadratic and cubic spline interpoations methods were also applied for comparison. Neural network model revealed similar percentage error to spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the wide range of the steam table.

Dynamic data Path Prediction in Network Virtual Environment

  • Jeoung, You-Sun;Ra, Sang-Dong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.83-87
    • /
    • 2007
  • This research studies real time interaction and dynamic data shared through 3D scenes in virtual network environments. In a distributed virtual environment of client-server structure, consistency is maintained by the static information exchange; as jerks occur by packet delay when updating messages of dynamic data exchanges are broadcasted disorderly, the network bottleneck is reduced by predicting the movement path by using the Dead-reckoning algorithm. In Dead-reckoning path prediction, the error between the estimated and the actual static values which is over the threshold based on the shared object location requires interpolation and multicasting of the previous location by the ESPDU of DIS. The shared dynamic data of the 3D virtual environment is implementation using the VRML.