In network delivery of compressed video, packets may be lost if the channel is unreliable like Internet. Such losses tend to of cur in burst like continuous bit-stream error. In this paper, we propose an effective error-concealment approach to which an error resilient video encoding approach is applied against burst errors and which reduces a complexity of error concealment at the decoder using data hiding. To improve the performance of error concealment, a temporal and spatial error resilient video encoding approach at encoder is developed to be robust against burst errors. For spatial area of error concealment, block shuffling scheme is introduced to isolate erroneous blocks caused by packet losses. For temporal area of error concealment, we embed parity bits in content data for motion vectors between intra frames or continuous inter frames and recovery loss packet with it at decoder after transmission While error concealment is performed on error blocks of video data at decoder, it is computationally costly to interpolate error video block using neighboring information. So, in this paper, a set of feature are extracted at the encoder and embedded imperceptibly into the original media. If some part of the media data is damaged during transmission, the embedded features can be extracted and used for recovery of lost data with bi-direction interpolation. The use of data hiding leads to reduced complexity at the decoder. Experimental results suggest that our approach can achieve a reasonable quality for packet loss up to 30% over a wide range of video materials.
Ji, Yoonsoo;Kim, Han-Saem;Lee, Moon-Gyo;Cho, Hyung-Ik;Sun, Chang-Guk
Journal of the Korean Geotechnical Society
/
v.37
no.5
/
pp.47-63
/
2021
Recently, the demand for three-dimensional (3D) underground maps from the perspective of digital twins and the demand for linkage utilization are increasing. However, the vastness of national geotechnical survey data and the uncertainty in applying geostatistical techniques pose challenges in modeling underground regional geotechnical characteristics. In this study, an optimal learning model based on multi-layer perceptron (MLP) was constructed for 3D subsurface lithological and geotechnical classification in Seoul, South Korea. First, the geotechnical layer and 3D spatial coordinates of each borehole dataset in the Seoul area were constructed as a geotechnical database according to a standardized format, and data pre-processing such as correction and normalization of missing values for machine learning was performed. An optimal fitting model was designed through hyperparameter optimization of the MLP model and model performance evaluation, such as precision and accuracy tests. Then, a 3D grid network locally assigning geotechnical layer classification was constructed by applying an MLP-based bet-fitting model for each unit lattice. The constructed 3D geotechnical layer map was evaluated by comparing the results of a geostatistical interpolation technique and the topsoil properties of the geological map.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.1D
/
pp.135-143
/
2009
Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.
The Journal of the Convergence on Culture Technology
/
v.10
no.4
/
pp.687-692
/
2024
The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.
Park, Jong-Chul;Kim, Man-Kyu;Jung, Woong-Sun;Han, Gyu-Cheol;Ryu, Young-Ki
Journal of the Korean Association of Geographic Information Studies
/
v.14
no.3
/
pp.78-95
/
2011
This study has developed various DEMs with different spatial resolutions using many different interpolation methods with the aid of a 1:5,000 digital map. In addition, this study has evaluated the vertical accuracy of various DEMs constructed by check point data obtained from the network RTK GPS survey. The obtained results suggest that a DEM developed from the TIN-based Terrain method performs well in evaluating height restriction of buildings in a flying safety area considering general RMSE values, land-type RMSE values and profile evaluation results, etc. And, it has been found that three meters is the right spatial resolution for a DEM in evaluating height restriction of buildings in a flying safety area. Meanwhile, elevation values obtained by the DEM are not point estimation values but interval estimation values. This can be used to check whether the height of buildings in the vicinity of an airfield violates height limitation values of the area. To check whether the height of buildings measured in interval estimation values violates height limitation values of the area, this study has adopted three steps: 1) high probability of violation, 2) low probability of violation, 3) inconclusiveness about the violation. The obtained results will provide an important basis for developing a GIS related to the evaluation of height restriction of buildings in the vicinity of an airfield. Furthermore, although results are limited to the study area, the vertical accuracy values of the DEM constructed from a two-dimensional digital map may provide useful information to researchers who try to use DEMs.
Korean Journal of Agricultural and Forest Meteorology
/
v.18
no.4
/
pp.208-220
/
2016
Automatic Mountain Meteorology Observation System (AMOS) is an important ingredient for several climatological and forest disaster prediction studies. In this study, we select the optimal sites for AMOS in the mountain areas of Honam and Jeju in order to prevent forest disasters such as forest fires and landslides. So, this study used spatial dataset such as national forest map, forest roads, hiking trails and 30m DEM(Digital Elevation Model) as well as forest risk map(forest fire and landslide), national AWS information to extract optimal site selection of AMOS. Technical methods for optimal site selection of the AMOS was the firstly used multifractal model, IDW interpolation, spatial redundancy for 2.5km AWS buffering analysis, and 200m buffering analysis by using ArcGIS. Secondly, optimal sites selected by spatial analysis were estimated site accessibility, observatory environment of solar power and wireless communication through field survey. The threshold score for the final selection of the sites have to be higher than 70 points in the field assessment. In the result, a total of 159 polygons in national forest map were extracted by the spatial analysis and a total of 64 secondary candidate sites were selected for the ridge and the top of the area using Google Earth. Finally, a total of 26 optimal sites were selected by quantitative assessment based on field survey. Our selection criteria will serve for the establishment of the AMOS network for the best observations of weather conditions in the national forests. The effective observation network may enhance the mountain weather observations, which leads to accurate prediction of forest disasters.
Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
Journal of Intelligence and Information Systems
/
v.25
no.1
/
pp.163-177
/
2019
As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.
Journal of the Korean Association of Geographic Information Studies
/
v.19
no.3
/
pp.61-74
/
2016
The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.2
/
pp.63-77
/
2022
Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.