최근 심층 신경망 (Deep Neural Networks, DNNs)는 모바일 및 임베디드 디바이스에 인간과 유사한 수준의 인공지능을 제공해 많은 응용에서 혁명을 가져왔다. 하지만, 이러한 DNN의 높은 추론 정확도는 큰 연산량을 요구하며, 따라서 기존의 사용되던 모델을 압축하거나 리소스가 제한적인 디바이스를 위해 작은 풋프린트를 가진 새로운 DNN 구조를 만드는 방법으로 DNN의 연산 오버헤드를 줄이기 위한 많은 노력들이 있어왔다. 이들 중 최근 작은 메모리 풋프린트를 갖는 모델 설계에서 주목받는 기법중 하나는 레이어 간에 패러미터를 공유하는 것이다. 하지만, 기존의 패러미터 공유 기법들은 ResNet과 같이 패러미터에 중복(redundancy)이 높은 것으로 알려진 깊은 심층 신경망에 적용되어왔다. 본 논문은 ShuffleNetV2와 같이 이미 패러미터 사용에 효율적인 구조를 갖는 소형 신경망에 적용할 수 있는 패러미터 공유 방법을 제안한다. 본 논문에서 제안하는 방법은 작은 크기의 템플릿과 레이어에 고유한 작은 패러미터를 결합하여 가중치를 생성한다. ImageNet과 CIFAR-100 데이터셋에 대한 우리의 실험 결과는 ShuffleNetV2의 패러미터를 15%-35% 감소시키면서도 기존의 패러미터 공유 방법과 pruning 방법에 대비 작은 정확도 감소만이 발생한다. 또한 우리는 제안된 방법이 최근의 임베디드 디바이스상에서 응답속도 및 에너지 소모량 측면에서 효율적임을 보여준다.
인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.
영상 블러 제거(deblurring)는 피사체의 움직임, 카메라의 흔들림, 초점의 흐림 등으로 인해 촬영 도중 발생한 영상 블러(blur)를 제거하는 것을 목표로 한다. 최근 스마트폰이 보급되며 휴대용 디지털카메라를 들고 다니는 것이 일상인 시대가 오면서 영상 블러 제거 기술은 그 필요성을 점점 더해가고 있다. 기존의 영상 블러 제거 기술들은 전통적인 최적화 기법을 활용하여 연구되어 오다가 최근에는 딥러닝이 주목받으며 합성곱 신경망 기반의 블러 제거 방법들이 활발하게 제안되고 있다. 하지만 많은 방법들이 성능에 먼저 초점을 맞추어 개발되어 알고리즘의 속도로 인하여 현실에서 실시간 활용이 어렵다는 문제점을 안고 있다. 이를 해결하고자 본 논문에서는여러 신경망 설계 기법을 활용하여 HD 영상에서도 30 FPS 이상의 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘을 설계하여 이를 제안한다. 또한 학습 및 추론 과정을 개선하여 속도에 별다른 영향 없이 신경망의 성능을 높이고 동시에 성능에 별다른 영향없이 신경망의 속도를 높였다. 이를 통해 최종적으로 1280×720 해상도에서 초당 33.74장의 프레임을 처리하며 실시간 동작이 가능함을 보여주었고 GoPro 데이터 세트를 기준으로 PSNR 29.79, SSIM 0.9287의 속도 대비 우수한 성능을 보여주었다.
국토 면적의 약 90%를 차지하는 농촌은 여러가지 공익적 기능을 수행하는 공간으로서 중요성과 가치가 증가하고 있지만 주거지 인근에 축사, 공장, 태양광패널 등 주민생활에 불편을 미치는 시설들이 무분별하게 들어서면서 농촌 환경과 경관이 훼손되고 주민 삶의 질이 낮아지고 있다. 농촌지역의 무질서한 개발을 방지하고 농촌 공간을 계획적으로 관리하기 위해서는 농촌지역 내 위해시설에 대한 탐지 및 모니터링이 필요하다. 주기적으로 취득 가능하고 전체 지역에 대한 정보를 얻을 수 있는 위성영상을 통해 데이터의 취득이 가능하고, 합성곱 신경망 기법을 통한 영상 기반 딥러닝 기술을 활용하여 효과적인 탐지가 가능하다. 따라서 본 연구에서는 의미적 분할(Semantic segmentation)에서 높은 성능을 보이는 U-Net 모델을 이용하여 농촌 지역에서 잠재적으로 위해시설이 될 수 있는 농촌시설을 분류하는 연구를 수행하였다. 본 연구에서는 2020년에 제작된 공간해상도 0.7 m의 KOMPSAT 정사모자이크 광학영상을 한국항공우주연구원으로부터 제공받아 사용하였으며 축사, 공장, 태양광 패널에 대한 AI 학습용 데이터를 직접 제작하여 학습 및 추론을 진행하였다. U-Net을 통해 학습시킨 결과 픽셀 정확도(pixel accuracy)는 0.9739, mean Intersection over Union (mIOU)은 0.7025의 값을 도출하였다. 본 연구 결과는 농촌 지역의 위험 시설물 모니터링에 활용될 수 있으며, 농촌계획 수립에 있어 기초 자료로 활용될 수 있을 것으로 기대된다.
환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.