• 제목/요약/키워드: network inference

검색결과 565건 처리시간 0.026초

구간 결정값을 갖는 의사결정시스템의 양방향 퍼지 추론망 (A bidirectional fuzy inference network for interval valued decision making systems)

  • 전명근
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.98-105
    • /
    • 1997
  • In this work, we proesent a bidirectional approximate reasoning method and fuzzy inference network for interval valued decision making systems. For this, we propose a new type of similarity measure between two fuzzy vectors based on the Ordered Weighted Averaging (OWA) operator. Since the proposed similarity measure has a structure to give the extreme values by choosing a suitable weighting vector of the OWA operator, it can render an interval valued similarity value. From this property, we derive a bidirectional approximate reasoning method based on the similarity measure and show its fuzzy inference network implementation for the decision making systems requiring the interval valued decisions.

  • PDF

초음파 모터 제어를 위한 퍼지 추론 시스템 기반 다중 제어기 설계 (Design of Multiple Controller Based on Fuzzy Inference System for Control of Ultrasonic Motor)

  • 민병우;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.258-258
    • /
    • 2000
  • In this paper, we present the position control of pendulum system which is driven by a ultrasonic motor. Since the system's response is different for each initial position of pendulum, it is difficult to obtain the satisfiable control performance by using a neural network which is learned by off-line. To overcome this problem, we propose the multiple controller based on fuzzy inference system for ultrasonic motor. and controller is designed by neural network. The proposed method shows good performance for any initial positions and it's effectiveness is verified from experiments. We expect that ultrasonic motor can be used as actuators of robot's leg or manipulator.

  • PDF

특성화 사설 네트워크 정보보호를 위한 접근권한 추론모드에 관한 연구 (A Study on Access Authorization Inference Modes for Information Security of Specialized Private Networks)

  • 서우석
    • 디지털산업정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.99-106
    • /
    • 2014
  • The most significant change and trend in the information security market in the year of 2014 is in relation to the issue and incidents of personal information security, which leads the area of information security to a new phase. With the year of 2011 as the turning point, the security technology advanced based on the policies and conditions that combine personal information and information security in the same category. Such technical changes in information security involve various types of information, rapidly changing security policies in response to emerging illegal techniques, and embracing consistent changes in the network configuration accordingly. This study presents the result of standardization and quantification of external access inference by utilizing the measurements to fathom the access authorization performance in advance for information security in specialized networks designed to carry out certain tasks for a group of clients in the easiest and most simple manner. The findings will provide the realistic data available with the access authorization inference modes to control illegal access to the edge of a client network.

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

퍼지-신경망 기반 고장진단 시스템의 설계 (Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme)

  • 김성호;김정수;박태홍;이종열;박귀태
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발 (A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm)

  • 김면희;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

인공신경망과 퍼지규칙 추출을 이용한 상황적응적 전문가시스템 구축에 관한 연구 (A Study on the Self-Evolving Expert System using Neural Network and Fuzzy Rule Extraction)

  • 이건창;김진성
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.231-240
    • /
    • 2001
  • Conventional expert systems has been criticized due to its lack of capability to adapt to the changing decision-making environments. In literature, many methods have been proposed to make expert systems more environment-adaptive by incorporating fuzzy logic and neural networks. The objective of this paper is to propose a new approach to building a self-evolving expert system inference mechanism by integrating fuzzy neural network and fuzzy rule extraction technique. The main recipe of our proposed approach is to fuzzify the training data, train them by a fuzzy neural network, extract a set of fuzzy rules from the trained network, organize a knowledge base, and refine the fuzzy rules by applying a pruning algorithm when the decision-making environments are detected to be changed significantly. To prove the validity, we tested our proposed self-evolving expert systems inference mechanism by using the bankruptcy data, and compared its results with the conventional neural network. Non-parametric statistical analysis of the experimental results showed that our proposed approach is valid significantly.

  • PDF

Lightweight Single Image Super-Resolution by Channel Split Residual Convolution

  • Liu, Buzhong
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.12-25
    • /
    • 2022
  • In recent years, deep convolutional neural networks have made significant progress in the research of single image super-resolution. However, it is difficult to be applied in practical computing terminals or embedded devices due to a large number of parameters and computational effort. To balance these problems, we propose CSRNet, a lightweight neural network based on channel split residual learning structure, to reconstruct highresolution images from low-resolution images. Lightweight refers to designing a neural network with fewer parameters and a simplified structure for lower memory consumption and faster inference speed. At the same time, it is ensured that the performance of recovering high-resolution images is not degraded. In CSRNet, we reduce the parameters and computation by channel split residual learning. Simultaneously, we propose a double-upsampling network structure to improve the performance of the lightweight super-resolution network and make it easy to train. Finally, we propose a new evaluation metric for the lightweight approaches named 100_FPS. Experiments show that our proposed CSRNet not only speeds up the inference of the neural network and reduces memory consumption, but also performs well on single image super-resolution.

유전자알고리즘을 이용한 유전자 조절네트워크 추론 (Gene Regulatory Network Inference using Genetic Algorithms)

  • 김태건;정성훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.237-240
    • /
    • 2007
  • 본 논문에서는 유전자 발현데이터로부터 유전자 조절네트워크를 추론하는 유전자 알고리즘을 제안한다. 근래에 유전자 알고리즘을 이용하여 유전자 조절네트워크를 추론하려는 시도가 있었으나 그리 성공적이지 못하였다. 우리는 본 논문에서 유전자 조절네트워크를 보다 효율적으로 추론할 수 있게 하기 위하여 새로운 유전자 인코딩 기법을 개발하여 적용하였다. 선형 유전자 조절네트워크로 모델링 된 인공 유전자 조절네트워크를 사용하여 실험한 결과 대부분의 경우에 있어서 주어진 인공 유전자 조절네트워크와 유사한 네트워크를 추론하였으며 완전히 동일한 유전자네트워크를 추론하기도 하였다. 향후 실제 유전자 발현 데이터를 이용하여 추론해 보는 것이 필요하다.

  • PDF

퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템 (An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF