• Title/Summary/Keyword: network flows

Search Result 515, Processing Time 0.021 seconds

Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

  • Afaq, Muhammad;Rehman, Shafqat;Song, Wang-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Despite the fact that traffic engineering techniques have been comprehensively utilized in the past to enhance the performance of communication networks, the distinctive characteristics of Software Defined Networking (SDN) demand new traffic engineering techniques for better traffic control and management. Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes of file transfer traffic. So it is very important to identify large flows for different applications. In the scope of this paper, we present an approach to detect large flows in real-time without even a short delay. After the detection of large flows, the next problem is how to control these large flows effectively and prevent network jam. In order to address this issue, we propose an approach in which when the controller is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control application. This real-time detection, marking, and controlling of large flows will assure an optimize usage of an overall network.

A Study on a Stochastic Material Flow Network with Bidirectional and Uncertain Flows (양방향 흐름을 고려한 물류시스템의 최적화 모델에 관한 연구)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 1997
  • The efficiency of material flow systems in terms of optimal network flow and minimum cost flow has always been an important design and operational goal in material handling and distribution system. In this research, an attempt was made to develop a new algorithm and the model to solve a stochastic material flow network with bidirectional and uncertain flows. A stochastic material flow network with bidirectional flows can be considered from a finite set with unknown demand probabilities of each node. This problem can be formulated as a special case of a two-stage linear programming problem which can be converted into an equivalent linear program. To find the optimal solution of proposed stochastic material flow network, some terminologies and algorithms together with theories are developed based on the partitioning and subgradient techniques. A computer program applying the proposed method was developed and was applied to various problems.

  • PDF

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

A Classifiable Sub-Flow Selection Method for Traffic Classification in Mobile IP Networks

  • Satoh, Akihiro;Osada, Toshiaki;Abe, Toru;Kitagata, Gen;Shiratori, Norio;Kinoshita, Tetsuo
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.307-322
    • /
    • 2010
  • Traffic classification is an essential task for network management. Many researchers have paid attention to initial sub-flow features based classifiers for traffic classification. However, the existing classifiers cannot classify traffic effectively in mobile IP networks. The classifiers depend on initial sub-flows, but they cannot always capture the sub-flows at a point of attachment for a variety of elements because of seamless mobility. Thus the ideal classifier should be capable of traffic classification based on not only initial sub-flows but also various types of sub-flows. In this paper, we propose a classifiable sub-flow selection method to realize the ideal classifier. The experimental results are so far promising for this research direction, even though they are derived from a reduced set of general applications and under relatively simplifying assumptions. Altogether, the significant contribution is indicating the feasibility of the ideal classifier by selecting not only initial sub-flows but also transition sub-flows.

Job-aware Network Scheduling for Hadoop Cluster

  • Liu, Wen;Wang, Zhigang;Shen, Yanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.237-252
    • /
    • 2017
  • In recent years, data centers have become the core infrastructure to deal with big data processing. For these big data applications, network transmission has become one of the most important factors affecting the performance. In order to improve network utilization and reduce job completion time, in this paper, by real-time monitoring from the application layer, we propose job-aware priority scheduling. Our approach takes the correlations of flows in the same job into account, and flows in the same job are assigned the same priority. Therefore, we expect that flows in the same job finish their transmissions at about the same time, avoiding lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using NS-2 simulator. In our evaluations, we emulate real network environment by setting background traffic, scheduling delay and link failures. The experimental results show that our approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly reduce the network transmission time of the highest priority job.

Real-Time Classification, Visualization, and QoS Control of Elephant Flows in SDN (SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어)

  • Muhammad, Afaq;Song, Wang-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.612-622
    • /
    • 2017
  • Long-lived flowed termed as elephant flows in data center networks have a tendency to consume a lot of bandwidth, leaving delay-sensitive short-lived flows referred to as mice flows choked behind them. This results in non-trivial delays for mice flows, eventually degrading application performance running on the network. Therefore, a datacenter network should be able to classify, detect, and visualize elephant flows as well as provide QoS guarantees in real-time. In this paper we aim to focus on: 1) a proposed framework for real-time detection and visualization of elephant flows in SDN using sFlow. This allows to examine elephant flows traversing a switch by double-clicking the switch node in the topology visualization UI; 2) an approach to guarantee QoS that is defined and administered by a SDN controller and specifications offered by OpenFlow. In the scope of this paper, we will focus on the use of rate-limiting (traffic-shaping) classification technique within an SDN network.

AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS

  • Ryang, Yong Joon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1996
  • The optimization problems with quadratic constraints often appear in various fields such as network flows and computer tomography. In this paper, we propose an algorithm for solving those problems and prove the convergence of the proposed algorithm.

  • PDF

SECOND BEST TEMPORALLY REPEATED FLOWS

  • Eleonor, Ciurea
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Ford and Fulkerson have shown that a stationary maximal dynamic flow can be obtained by solving a transhipment problem associated with the static network and thereby finding the maximal temporally repeated dynamic flow. This flow is known to be an optical dynamic flow. This paper presents an algorithm for second best temporal1y repeated flows. A numerical example is presented.

Performance Benefits of Virtual Path Tunneling for Control and Management Flows in the Broadband ATM Network

  • Choi, Jun-Kyun;Kim, Soo-Hyung;Kim, Nam;Sohn, Sung-Won;Choi, Mun-Kee
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.23-28
    • /
    • 1999
  • In this paper, we analyze the performance benefits of broadband ATM networks when the call control and management flows are separated from user data flows. The virtual path tunneling concept for control and management flows are applied to the same physical ATM networks. The behaviors of channel throughput and transfer delay are analyzed. It results that the proposed virtual short-cut paths can maintain the network being stable with acceptable bandwidth. They are very useful to provide the stable control and management capabilities for Internet and mobile applications in the broadband ATM networks. In our numerical results, the effective throughputs of the proposed virtual shout-ut channel are about three times than those of end-to-end user data channels with hop distances of 10, and about two times than those with hop distance of 5 when the link blocking probability increases to 0.1. It concludes that the effective channel bandwidth are greatly reduced down while physical links are not stable and user traffic flows are occasionally overflowed.

  • PDF

Throughput-Delay Analysis of One-to-ManyWireless Multi-Hop Flows based on Random Linear Network

  • Shang, Tao;Fan, Yong;Liu, Jianwei
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.430-438
    • /
    • 2013
  • This paper addresses the issue of throughput-delay of one-to-many wireless multi-hop flows based on random linear network coding (RLNC). Existing research results have been focusing on the single-hop model which is not suitable for wireless multi-hop networks. In addition, the conditions of related system model are too idealistic. To address these limitations, we herein investigate the performance of a wireless multi-hop network, focusing on the one-to-many flows. Firstly, a system model with multi-hop delay was constructed; secondly, the transmission schemes of system model were gradually improved in terms of practical conditions such as limited queue length and asynchronous forwarding way; thirdly, the mean delay and the mean throughput were quantified in terms of coding window size K and number of destination nodes N for the wireless multi-hop transmission. Our findings show a clear relationship between the multi-hop transmission performance and the network coding parameters. This study results will contribute significantly to the evaluation and the optimization of network coding method.