• Title/Summary/Keyword: network control system

Search Result 5,321, Processing Time 0.038 seconds

A Study on The Integrated Simulation of The Intelligent Building Control Systems and Network (인텔리전트 빌딩의 제어 시스템 및 네트워크의 통합 시뮬레이션에 관한 연구)

  • Shin, Jin-Sok;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.106-108
    • /
    • 1997
  • Many new office buildings are being built as intelligent buildings equipped with building automation(HA) systems, office automation(OA) systems, and telecommunication(TC) systems in order to provide pleasant building environment and the ease of maintenance and facility management. Building control systems which are employed in intelligent buildings require varieties of advanced control systems and network systems for efficient integrated management. Design and installation of these types of advanced building control systems take a lot of efforts and also they are costly. In order to design these systems, it is necessary for the designers to have the integrated simulator including proper network system simulation. In this paper, the integrated simulator that consist of HVAC system, lighting system, elevator system, parking system based on the network system is presented. For the development of integrated simulator, AHENA which is the general-purpose software tool for a simulation with reinforced GUI is used.

  • PDF

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Analysis of Response Characteristics of the CAN-Based Feedback Control System Considering the Network Delay Time

  • Jeon, Jong-Man;Kim, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.3-119
    • /
    • 2001
  • When building a network-based real-time control system, a network-induced delay time should be surly considered for real time schedulability to be guaranteed. The network delay time on end-to-end communication has been analyzed theoretically and modeled mathematically from many previous works. There also exist any other delay element not considered before. In this paper, the remote feedback control system using the CAN protocol is proposed to control three axes´ manipulator arm and the application layer of CAN is modeled to analyze the delay elements defined by three types of time delay: Software delay time, Controller delay time, and Access delay time, in details. The analyzed results are used as an important component to determine PID gains of the proposed system. The effect of the delay time on the control performance is evaluated by com paring the response characteristics of the control system through simulation.

  • PDF

CPS: Operating System Architecture for Efficient Network Resource Management with Control-Theoretic Packet Scheduler

  • Jung, Hyung-Soo;Han, Hyuck;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.266-274
    • /
    • 2010
  • The efficient network resource management is one of the important topics in a real-time system. In this paper, we present a practical network resource management framework, control-theoretic packet scheduler (CPS) system. Using our framework, an operating system can schedule both input and output streams accurately and efficiently. Our framework adopts very portable feedback control theory for efficiency and accuracy. The CPS system is able to operate independent of the internal network protocol state, and it is designed to schedule packet streams in fine-grained time intervals to meet the resource requirement. This approach simplifies the design of the CPS system, and leads us to obtain the intended output bandwidth. We implemented our prototype system in Linux, and measured the performance of the network resource management system under various network QoS constraints. The distinctive features of our principles are as follows: It is robust and accurate, and its operation is independent of internal network protocols.

Development of the Broadband PLC Home Controller using JINI Surrogate

  • Kim, Yong-Seok;Kim, Hee-Sun;Lee, Chang-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1563-1567
    • /
    • 2005
  • The Home network system means that information appliances, Home PCs, etc., using wired or wireless network method enable to control and share with peripheral devices such as internet, shared data, a scanner and a printer, and it is networking solution, which intelligent communication will be possible as the system which can do a remote control such as TV Set, refrigerators, air conditioners, DVD players, digital camcorders based on external network using an internet, a potable information terminal and a mobile phone whenever, wherever and freely. In this study, the home network interface solution is used one of the wired network standards, PLC (Power-Line Communication) technology, so we can construct of intelligent home network's home controller without re-build a network at home. On keeping with current waves of thought, we will focus on a home controller development with great interest which is enabled to do an effective managed control, applying intelligent home network technology which can be new paradigm like a cyber apartment.

  • PDF

Speed control of AC Servo motor using neural network (뉴럴네트웤을 이용한 AC 서보 전동기의 속도제어)

  • Ban, Gi-Jong;Yun, Gwang-Ho;Choe, Seong-Dae;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2747-2749
    • /
    • 2005
  • This paper presents an intelligent control system for an ac servo motor dirve to track periodic commands using a neural network. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

Control Method of Nonlinear System using Dynamical Neural Network (동적 신경회로망을 이용한 비선형 시스템 제어 방식)

  • 정경권;이정훈;김영렬;이용구;손동설;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.33-36
    • /
    • 2002
  • In this paper, we propose a control method of an unknown nonlinear system using a dynamical neural network. The method proposed in this paper performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed algorithm, we simulated one-link manipulator. The simulation result showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift (무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법)

  • Song, Young-Hun;Park, Jee-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

Methods for an application of real-time network control on distributed storage facilities (분산형 저류시설의 실시간 네트워크 제어기술 적용시 고려 사항)

  • Beak, Hyunwook;Ryu, Jaena;Oh, Jeill;Kim, Tae-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.711-721
    • /
    • 2013
  • Optimal operation of a combined sewer network with distributed storage facilities aims to use the whole retention capacity of all reservoirs efficiently before overflows take place somewhere in the considered network system. An efficient real-time network control (RTNC) strategy has been emerging as an attractive approach for reducing substantially the overflows from a sewer network compared to the conventional fixed or manually adjusted gate setting method, but the related concrete framework for RTC development has not been throughly introduced so far. The main goal of this study is to give a detailed description of the RTNC systems via reviewing several guidelines published abroad, and finally to suggest methods for the proper application of RTNC on distributed storage facilities. Especially, this study is focused on emphasizing the importance of hierarchical structure of RTNC system that consists of three control layers (management, global control and local control). Further, with regard to the global control layer which is responsible for the central overall network control, the wide-ranging details of two components (adaption and optimization layers) are also presented. This study can provide the valuable basis for the RTNC implementation in the particular sewer network with distributed multiple storage facilities.