• Title/Summary/Keyword: network component analysis

Search Result 541, Processing Time 0.027 seconds

Application of Sensor Fault Detection Method to Water Measurement System (센서 고장 검출 기법의 수질 계측 시스템에의 적용)

  • Lee, Young-Sam;Han, Yun-Jong;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2289-2291
    • /
    • 2003
  • NLPCA(Nonlinear Principal Component Analysis is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA can be implemented by a feedforward neural network called AANN (AutoAssociative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA and Maximum Likelihood Estimation scheme is presented. To verify its applicability, simulation study on the data supplied from Saemangeum measurement stations is executed.

  • PDF

Managing Duplicate Memberships of Websites : An Approach of Social Network Analysis (웹사이트 중복회원 관리 : 소셜 네트워크 분석 접근)

  • Kang, Eun-Young;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.153-169
    • /
    • 2011
  • Today using Internet environment is considered absolutely essential for establishing corporate marketing strategy. Companies have promoted their products and services through various ways of on-line marketing activities such as providing gifts and points to customers in exchange for participating in events, which is based on customers' membership data. Since companies can use these membership data to enhance their marketing efforts through various data analysis, appropriate website membership management may play an important role in increasing the effectiveness of on-line marketing campaign. Despite the growing interests in proper membership management, however, there have been difficulties in identifying inappropriate members who can weaken on-line marketing effectiveness. In on-line environment, customers tend to not reveal themselves clearly compared to off-line market. Customers who have malicious intent are able to create duplicate IDs by using others' names illegally or faking login information during joining membership. Since the duplicate members are likely to intercept gifts and points that should be sent to appropriate customers who deserve them, this can result in ineffective marketing efforts. Considering that the number of website members and its related marketing costs are significantly increasing, it is necessary for companies to find efficient ways to screen and exclude unfavorable troublemakers who are duplicate members. With this motivation, this study proposes an approach for managing duplicate membership based on the social network analysis and verifies its effectiveness using membership data gathered from real websites. A social network is a social structure made up of actors called nodes, which are tied by one or more specific types of interdependency. Social networks represent the relationship between the nodes and show the direction and strength of the relationship. Various analytical techniques have been proposed based on the social relationships, such as centrality analysis, structural holes analysis, structural equivalents analysis, and so on. Component analysis, one of the social network analysis techniques, deals with the sub-networks that form meaningful information in the group connection. We propose a method for managing duplicate memberships using component analysis. The procedure is as follows. First step is to identify membership attributes that will be used for analyzing relationship patterns among memberships. Membership attributes include ID, telephone number, address, posting time, IP address, and so on. Second step is to compose social matrices based on the identified membership attributes and aggregate the values of each social matrix into a combined social matrix. The combined social matrix represents how strong pairs of nodes are connected together. When a pair of nodes is strongly connected, we expect that those nodes are likely to be duplicate memberships. The combined social matrix is transformed into a binary matrix with '0' or '1' of cell values using a relationship criterion that determines whether the membership is duplicate or not. Third step is to conduct a component analysis for the combined social matrix in order to identify component nodes and isolated nodes. Fourth, identify the number of real memberships and calculate the reliability of website membership based on the component analysis results. The proposed procedure was applied to three real websites operated by a pharmaceutical company. The empirical results showed that the proposed method was superior to the traditional database approach using simple address comparison. In conclusion, this study is expected to shed some light on how social network analysis can enhance a reliable on-line marketing performance by efficiently and effectively identifying duplicate memberships of websites.

A Study on Allocation of Air Pollution Monitoring Network by Spatial Distribution Analysis of Ozone and Nitrogen Dioxide Concentrations in Busan (부산지역 오존 및 이산화질소 농도의 공간분포해석에 따른 대기오염측정망 배치연구)

  • Yoo, Eun-Chul;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.583-591
    • /
    • 2004
  • In this study, methodologies for the rational organization of air pollution monitoring network were examined by understanding the characteristics of temporal and spatial distribution of secondary air pollution, whose significance would increase hereafter. The data on $O_3$ and $NO_2$ concentrations during high ozone period in 1998~1999 recorded at the nine air pollution monitoring station in Busan were analysed using principal component analysis (PCA) and cumulative semivariogram. It was found that the ozone concentration was deeply associated with the daily emission characteristics or the $O_3$ precusors, and nitrogen dioxide concentration largely depends on the emission strength of regional sources. According to the spatial distribution analysis of ozone and nitrogen dioxide in Busan using cumulative semivariograms, the number of monitoring stations for the secondary air pollution can be reduced in east-west direction, but reinforced in north-south direction to explain the spacial variability. More scientific and rational relocation of air pollution monitoring network in Busan would be needed to investigate pollution status accurately and to plan and implement the pollution reduction policies effectively.

Pattern Classification of Acoustic Emission Signals During Wood Drying by Artificial Neural Network (인공신경망을 이용한 목재건조 중 발생하는 음향방출 신호 패턴분류)

  • 김기복;강호양;윤동진;최만용
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.261-266
    • /
    • 2004
  • This study was Performed to classify the acoustic emission(AE) signal due to surface cracking and moisture movement in the flat-sawn boards of oak(Quercus Variablilis) during drying using the principal component analysis(PCA) and artificial neural network(ANN). To reduce the multicollinearity among AE parameters such as peak amplitude, ring-down count event duration, ring-down count divided by event duration, energy, rise time, and peak amplitude divided by rise time and to extract the significant AE parameters, correlation analysis was performed. Over 96 of the variance of AE parameters could be accounted for by the first and second principal components. An ANN analysis was successfully used to classify the Af signals into two patterns. The ANN classifier based on PCA appeared to be a promising tool to classify the AE signals from wood drying.

Network-based regularization for analysis of high-dimensional genomic data with group structure (그룹 구조를 갖는 고차원 유전체 자료 분석을 위한 네트워크 기반의 규제화 방법)

  • Kim, Kipoong;Choi, Jiyun;Sun, Hokeun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1117-1128
    • /
    • 2016
  • In genetic association studies with high-dimensional genomic data, regularization procedures based on penalized likelihood are often applied to identify genes or genetic regions associated with diseases or traits. A network-based regularization procedure can utilize biological network information (such as genetic pathways and signaling pathways in genetic association studies) with an outstanding selection performance over other regularization procedures such as lasso and elastic-net. However, network-based regularization has a limitation because cannot be applied to high-dimension genomic data with a group structure. In this article, we propose to combine data dimension reduction techniques such as principal component analysis and a partial least square into network-based regularization for the analysis of high-dimensional genomic data with a group structure. The selection performance of the proposed method was evaluated by extensive simulation studies. The proposed method was also applied to real DNA methylation data generated from Illumina Innium HumanMethylation27K BeadChip, where methylation beta values of around 20,000 CpG sites over 12,770 genes were compared between 123 ovarian cancer patients and 152 healthy controls. This analysis was also able to indicate a few cancer-related genes.

Sleep Disturbance Classification Using PCA and Sleep Stage 2 (주성분 분석과 수면 2기를 이용한 수면 장애 분류)

  • Shin, Dong-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Static Load Modeling Based on Artificial Neural Network and Harmonics (고조파를 고려한 신경회로망 기반의 정태부하모델링)

  • Lee, Jong-Pil;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Nonlinear loads with harmonics exist in an actual power system where harmonic currents make voltage distortion. The sum of reactive power measured at individual load is different from the measured reactive power at a bus in a power system with linear and non-linear loads. In this study, ANN(artificial neural network) load modeling technique with consideration of harmonics is introduced for more accurate component load modeling and an impact coefficient is proposed for aggregation of component loads. Results of this research show more accurate load modeling method. Since precise data for power system analysis can be acquired, the proposed method will be used for power system planning and maintenance.

Complex Features by Independent Component Analysis (독립성분분석에 의한 복합특징 형성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.351-355
    • /
    • 2003
  • Neurons in the mammalian visual cortex can be classified into the two main categories of simple cells and complex cells based on their response properties. Here, we find the complex features corresponding to the response of complex cells by applying the unsupervised independent component analysis network to input images. This result will be helpful to elucidate the information processing mechanism of neurons in primary visual cortex.

  • PDF

Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • Kim, Sung-Suk;Lee, Dae-Jeong;Park, Jang-Hwan;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.878-882
    • /
    • 2004
  • In this paper, we propose a hierarchical hybrid neural network for detecting faults of induction motor. Implementing the classifier based on the input and output data, we apply appropriate transform and classification method at each step. In the proposed method, after obtaining the current of state of motor for each period, we transform it by Principle Component Analysis(PCA) to reduce its dimension. Before the training process, we use the conditional Fuzzy C-means(FCM) for obtaining the initial parameters of neural network for more effective learning procedure. From the various simulations, we find that the proposed method shows better performance to detect and diagnosis of induction motor and compare than other methods.