• 제목/요약/키워드: network component analysis

검색결과 541건 처리시간 0.024초

CIM 구축을 위한 지능형 고장진단 시스템 개발 (Development of Intelligent Fault Diagnosis System for CIM)

  • 배용환;오상엽
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

표면파의 수치해석을 위한 인공지능 엔진 개발 (Artificial Intelligence Engine for Numerical Analysis of Surface Waves)

  • 곽효경;김재홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.89-96
    • /
    • 2006
  • Nondestructive evaluation using surface waves needs an analytical solution for the reference value to compare with experimental data. Finite element analysis is very powerful tool to simulate the wave propagation, but has some defects. It is very expensive and high time-complexity for the required high resolution. For those reasons, it is hard to implement an optimization problem in the actual situation. The developed engine in this paper can substitute for the finite element analysis of surface waves propagation, and it accomplishes the fast analysis possible to be used in optimization. Including this artificial intelligence engine, most of soft computing algorithms can be applied on the special database. The database of surface waves propagation is easily constructed with the results of finite element analysis after reducing the dimensions of data. The principal wavelet-component analysis is an efficient method to simplify the transient wave signal into some representative peaks. At the end, artificial neural network based on the database make it possible to invent the artificial intelligence engine.

  • PDF

액체로켓엔진 가스발생기 사이클의 배관망 해석 (Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle)

  • 임태규;이상복;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.52-57
    • /
    • 2012
  • 액체로켓은 연소기, 가스발생기, 터보펌프, 터빈 등으로 구성된 시스템이며, 각 요소들을 연결해주는 공급계 부품들로 구성되어 있다. 각 부품들이 액체로켓 성능에 복합적인 영향을 미치기 때문에 개념설계 전 시스템의 전체적인 예비해석이 반드시 필요하다. 액체로켓 엔진 시스템의 각 구성품 모듈을 고려한 통합 해석 프로그램의 개발은 이루어지지 않았다. 본 논문에서는 액체로켓 공급계 부품의 모델구성 및 검증을 거친 후 가스발생기 사이클 구성하였으며, 대표적인 가스발생기 사이클인 F-1 엔진의 결과와 비교하였다.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

비선형 주성분해석과 신경망에 기반한 비선형 PLS (Non-linear PLS based on non-linear principal component analysis and neural network)

  • 손정현;정신호;송상옥;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.394-394
    • /
    • 2000
  • This Paper proposes a new nonlinear partial least square method that extends the linear PLS. Proposed nonlinear PLS uses self-organizing feature map as PLS outer relation and multilayer neural network as PLS inner regression method.

  • PDF

센서 네트워크를 위한 지능형 데이터 유효화 기법의 개발 (Development of Intelligent Data Validation Scheme for Sensor Network)

  • 육의수;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.481-486
    • /
    • 2007
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. The large number of sensor nodes in a WSN means that there will often be some nodes which give erroneous sensor data owing to several reasons such as power shortage and transmission error. Generally, these sensor data are gathered by a sink node to monitor and diagnose the current environment. Therefore, this can make it difficult to get an effective monitoring and diagnosis. In this paper, to overcome the aforementioned problems, intelligent sensor data validation method based on PCA(Principle Component Analysis) is utilized. Furthermore, a practical implementation using embedded system is given to show the feasibility of the proposed scheme.

신경망 모델을 이용한 차량 절대속도 추정 (Absolute Vehicle Speed Estimation using Neural Network Model)

  • 오경흡;송철기
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

독립 성분 특징을 적용한 신경망을 이용한 효율적이고 안정적인 손 검출 (Effective and reliable Hand Detection Using Neural Network with ICA features)

  • 이승준;고한석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.367-369
    • /
    • 2004
  • In this paper we propose an effective and reliable hand detection method using neural network with ICA(Independent Component Analysis) Features. Many algorithms of hand detection have been proposed yet. Among them, ICA is the one of the interesting topics in image processing. ICA can not only separate mixed signals but also efficiently extract low-dimensional features in signals. ICA features are able to represent the characteristic of the images well. The object of this paper is to use effectively ICA that has above advantage. That is, by the proper number of Independent component the arithmetic speed is faster and by normalization of ICA feature the performance of detection is more reliable. For this, we adopt the algorithm, the Proportion of variance, which select the ICA feature by comparing the ratio of variance of ICA feature. By this method, we can extract the feature that is good at classifying hand and non-hand. Our experimental results show that by using ICA features, we obtained a better performance in hand detection than by only training NN on the image. And we can use hand detection system effectively and reliably by our proposal.

  • PDF

Improving the Subject Independent Classification of Implicit Intention By Generating Additional Training Data with PCA and ICA

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제14권4호
    • /
    • pp.24-29
    • /
    • 2018
  • EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.

Wavelet 변환을 이용한 고장전류의 판별에 관한 연구 (A Study on the Application of Wavelet Transform to Faults Current Discrimination)

  • 조현우;정종원;윤기영;김태우;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.213-217
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to courier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the FFW (Fast courier Transform).ransform).

  • PDF