• 제목/요약/키워드: network and acicular cementite

검색결과 2건 처리시간 0.015초

초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향 (Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel)

  • 김종백;강창룡
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향 (Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel)

  • 강창룡;권민기;김창호
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.