• Title/Summary/Keyword: network

Search Result 57,525, Processing Time 0.072 seconds

A Study on the Types of Social Networks of Housewives in Urban Nuclear Families (가족의 사회관계망 유형화 연구 - 도시 핵가족 주부를 중심으로 -)

  • 원효종;옥선화
    • Journal of Families and Better Life
    • /
    • v.20 no.4
    • /
    • pp.149-164
    • /
    • 2002
  • The purpose of this study was to identify the types of social networks of urban housewives according to different network composition patterns and to analyze the structural and functional characteristics of identified types. The data used in this study were collected from 589 full-time housewives residing in Taejeon city. The major findings are as follows: 1) The social networks of housewives in urban nuclear families were classified into eight types: the kin network, the non-kin network, the kin-centered network, the friend-centered network, the neighbor-centered network, the associate-centered network, the parallel network, and the decentralized network. 2) The structual characteristics (size, density, homogeneity, duration, proximity, frequency, closeness, direction) varied according to the type. The kin network type and the non-kin network type showed extreme degrees in network characteristics. The parallel network type and the decentralized network type showed an average level of network characteristics. The kin-, friend-, neighbor-, and the associate-centered types showed network characteristics of an intermediate level between the single-category types and the decentralized type. 3) The average levels of function of social network types were different in only two(service support, interference) of the six function areas(emotional support, service support, material support, information support, social companionship support, interference). The average level of service support by the non-kin network type was higher than other types. The average level of interference by the kin-centered network type was higher than other types, and that of the neighbor-centered network type was lower than other types. On the other hand, the total amount of function performance of social network types was different in all function areas. The total amount of social support given by the decentralized network type was greater than the other types. The total amount of interference given by the non-kin network type was smaller than the other types.

Re-examining Network Market Strategies from the Perspective of the Local Network: Market Competition between Incompatible Technologies

  • Choi, Han-Nool;Lee, Byung-Tae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.189-206
    • /
    • 2005
  • Much of work on network externality assumed network effects are dependent on the network size. Therefore, very little consideration is given to the view that marginal benefits from joining the network may not increase with the network size if consumer benefits come from the direct interaction with neighbors, namely local network. In this study, we used the agent-based simulation method to reexamine the effectiveness of the traditional network market strategy under the presence of the local network where two incompatible technologies compete. We found that the strategy of growing an initial customer base is not effective under the presence of the local network. Our study also showed that targeting customers based on their technology Preference is not as effective as targeting customers within the same local network. As a result, the focus of a network market strategy should be directed to taking advantage of the customer network.

  • PDF

A Case Study on Network Status Classification based on Latency Stability

  • Kim, JunSeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4016-4027
    • /
    • 2014
  • Understanding network latency is important for providing consistent and acceptable levels of services in network-based applications. However, due to the difficulty of estimating applications' network demands and the difficulty of network latency modeling the management of network resources has often been ignored. We expect that, since network latency repeats cycles of congested states, a systematic classification method for network status would be helpful to simplify issues in network resource managements. This paper presents a simple empirical method to classify network status with a real operational network. By observing oscillating behavior of end-to-end latency we determine networks' status in run time. Five typical network statuses are defined based on a long-term stability and a short-term burstiness. By investigating prediction accuracies of several simple numerical models we show the effectiveness of the network status classification. Experimental results show that around 80% reduction in prediction errors depending on network status.

Architectures and Connection Probabilities forWireless Ad Hoc and Hybrid Communication Networks

  • Chen, Jeng-Hong;Lindsey, William C.
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.161-169
    • /
    • 2002
  • Ad hoc wireless networks involving large populations of scattered communication nodes will play a key role in the development of low power, high capacity, interactive, multimedia communication networks. Such networks must support arbitrary network connections and provide coverage anywhere and anytime. This paper partitions such arbitrarily connected network architectures into three distinct groups, identifies the associated dual network architectures and counts the number of network architectures assuming there exist N network nodes. Connectivity between network nodes is characterized as a random event. Defining the link availability P as the probability that two arbitrary network nodes in an ad hoc network are directly connected, the network connection probability $ \integral_n$(p) that any two network nodes will be directly or indirectly connected is derived. The network connection probability $ \integral_n$(p) is evaluated and graphically demonstrated as a function of p and N. It is shown that ad hoc wireless networks containing a large number of network nodes possesses the same network connectivity performance as does a fixed network, i.e., for p>0, $lim_{N\to\infty} Integral_n(p)$ = 1. Furthermore, by cooperating with fixed networks, the ad hoc network connection probability is used to derive the global network connection probability for hybrid networks. These probabilities serve to characterize network connectivity performance for users of wireless ad hoc and hybrid networks, e.g., IEEE 802.11, IEEE 802.15, IEEE 1394-95, ETSI BRAN HIPERLAN, Bluetooth, wireless ATM and the world wide web (WWW).

Android Network Packet Monitoring & Analysis Using Wireshark and Debookee

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.26-38
    • /
    • 2016
  • Recently, mobile traffic has increased tremendously due to the deployment of smart devices such as smartphones and smart tablets. Android is the world's most powerful mobile platform in smartphone. The Android operating system provide seamless access to many applications and access to the Internet. It would involve network packet sharing communicated over the network. Network packet contains a lot of useful information about network activity that can be used as a description of the general network behaviours. To study what is the behaviours of the network packet, an effective tools such as network packet analyzers software used by network administrators to capture and analyze the network information. In this research, more understanding about network information in live network packet captured from Android smartphone is the target and identify the best network analyzer software.

The development of a ship's network monitoring system using SNMP based on standard IEC 61162-460

  • Wu, Zu-Xin;Rind, Sobia;Yu, Yung-Ho;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.906-915
    • /
    • 2016
  • In this study, a network monitoring system, including a secure 460-Network and a 460-Gateway, is designed and developed according with the requirements of the IEC (International Electro-Technical Commission) 61162-460 network standard for the safety and security of networks on board ships. At present, internal or external unauthorized access to or malicious attack on a ship's on board systems are possible threats to the safe operation of a ship's network. To secure the ship's network, a 460-Network was designed and implemented by using a 460-Switch, 460-Nodes, and a 460-Gateway that contains firewalls and a DMZ (Demilitarized Zone) with various application servers. In addition, a 460-firewall was used to block all traffic from unauthorized networks. 460-NMS (Network Monitoring System) is a network-monitoring software application that was developed by using an simple network management protocol (SNMP) SharpNet library with the .Net 4.5 framework and a backhand SQLite database management system, which is used to manage network information. 460-NMS receives network information from a 460-Switch by utilizing SNMP, SNMP Trap, and Syslog. 460-NMS monitors the 460-Network load, traffic flow, current network status, network failure, and unknown devices connected to the network. It notifies the network administrator via alarms, notifications, or warnings in case any network problem occurs. Once developed, 460-NMS was tested both in a laboratory environment and for a real ship network that had been installed by the manufacturer and was confirmed to comply with the IEC 61162-460 requirements. Network safety and security issues onboard ships could be solved by designing a secure 460-Network along with a 460-Gateway and by constantly monitoring the 460-Network according to the requirements of the IEC 61162-460 network standard.

Modular Neural Network Using Recurrent Neural Network (궤환 신경회로망을 사용한 모듈라 네트워크)

  • 최우경;김성주;서재용;전흥태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1565-1568
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with multi-layer neural network. The structure of modular neural network in researched by Jacobs and Jordan is selected in this paper. Modular network consists of several expert networks and a gating network which is composed of single-layer neural network or multi-layer neural network. We propose modular network structure using recurrent neural network, since the state of the whole network at a particular time depends on an aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

The Network Performance Analysis of Distributed Control System using Software Tool (분산제어시스템 통신망의 소프트웨어 시뮬레이션을 통한 성능 분석)

  • Jo, H.S.;Oh, E.S.;Park, D.Y.;Song, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2292-2294
    • /
    • 2002
  • This paper presents the network of Distributed Control System(DCS) considering specification of nuclear power plant. The network is composed of field network, control network and information network. The protocol of control network is ring type and it is compared to ethernet type. This paper proposes the structure of DCS, the protocol of each network and analyzes the network traffic along data capacity of field network, control network, information network and the network performance. Network II.5 is used as traffic simulation tool.

  • PDF

A Study on the Robustness of the Bitcoin Lightning Network (Bitcoin Lightning Network의 강건성에 대한 연구)

  • Lee, Seung-jin;Kim, Hyoung-shick
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.1009-1019
    • /
    • 2018
  • Bitcoin is the first application utilizing the blockchain, but it has limitations in terms of scalability. The concept of Lightning Network was recently introduced to address the scalability problem of Bitcoin. In this paper, we found that the real-world Bitcoin Lightning Network shows the scale-free property. Therefore, the Bitcoin Lightning Network can be vulnerable to the intentional attacks targeting some specific nodes in the network while it is still robust to the random node failures. We experimentally analyze the robustness of the Bitcoin's Lightning Network via the simulation of network attack model. Our simulation results demonstrate that the real-world Lightning Network is vulnerable to target attacks that destroy a few nodes with high degree.