Journal of the Korean Society of Manufacturing Technology Engineers
/
v.9
no.3
/
pp.103-110
/
2000
Shaft encoder which encodes the rotational angle of a shaft becomes more important recently due to factory automation and office automation. Although an absolute type encoder is more dsirable due to its convenience an incremental encoder is commonly used because of its cost and technical difficulties Fabricating a high resolution absolute encoder is very diff-cult because the physical size is limited by currently available technology. In order to overcome this difficulty Moire fringe can be used incorporated with gray code. In order to measure the position of fringes which move as the code disk rotates a neural network was developed in this paper. Formerly fringe position is usually measured by a sophisticated software which needs a little long calculation time. However using nerual network method can eliminate such calculation time even though it needs learning job The pro-posed method is verified through several experiments.
This paper is a smartphone object recognition system using hierarchical convolutional neural network. The overall configuration is a method of communicating object information to the smartphone by matching the collected data by connecting the smartphone and the server and recognizing the object to the convergence neural network in the server. It is also compared to a hierarchical convolutional neural network and a fractional convolutional neural network. Hierarchical convolutional neural networks have 88% accuracy, fractional convolutional neural networks have 73% accuracy and 15%p performance improvement. Based on this, it shows possibility of expansion of T-Commerce market connected with smartphone and broadcasting media.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.49
no.9
/
pp.512-519
/
2000
A Neural networks has been used for a expert system and fault diagnosis system. It is possible to nonlinear function mapping and parallel processing. Therefore It has been developing for a Diagnosis system of nuclear plower plant. In general Neural Networks is a static mapping but Dynamic Neural Network(DNN) is dynamic mapping.쪼두 a fault occur in system a state of system is changed with transient state. Because of a previous state signal is considered as a information DNN is better suited for diagnosis systems than static neural network. But a DNN has many weights so a real time implementation of diagnosis system is in need of a rapid network architecture. This paper presents a algorithm for RCP monitoring Alarm diagnosis system using Self Dynamic Neural Network(SDNN). SDNN has considerably fewer weights than a general DNN. Since there is no interlink among the hidden layer. The effectiveness of Alarm diagnosis system using the proposed algorithm is demonstrated by applying to RCP monitoring in Nuclear power plant.
Journal of the Korean Society for Precision Engineering
/
v.9
no.2
/
pp.36-43
/
1992
In this paper, a robot assembly wrist, which is able to assemble chamferless parts, has been developed. The RCC (Remote Center Compliance) structure is used as a basic structure. 5 position sensors and 4 pneumatic actuators are installed additionally to measure the deformation of RCC structure and correct the errors actively. Due to the restricted direction of actuation, a decision rule which selects the suitable actuator according to the position sensor signals is needed. For this purpose, a neural network is used and it is experimentally shown that the nerual network overcomes system's nonlinearity. This paper presents fundamental experiment results for the insertion of parts with several clearance.
Journal of the Korean Institute of Telematics and Electronics C
/
v.34C
no.11
/
pp.95-103
/
1997
A robust center estimation tecnique of n-fold engineering parts is presented, which use self-organizing neural networks with generating and merging learning for training neural units. To estimate the center of the n-fold engineering parts using neural networks, the segmented boundaries of the interested part are approximated to strainght lines, and the temporal estimated centers by thecosine theorem which formed between the approximaged straight line and the reference point, , are indexed as (.sigma.-.theta.) parameteric vecstors. Then the entries of parametric vectors are fed into self-organizing nerual network. Finally, the center of the n-fold part is extracted by mean of generating and merging learning of the neurons. To accelerate the learning process, neural network uses an adaptive learning rate function to the merging process and a self-adjusting activation to generating process. Simulation results show that the centers of n-fold engineering parts are effectively estimated by proposed technique, though not knowing the error distribution of estimated centers and having less information of boundaries.
n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.671-672
/
2020
VVC(Versertile Video Codec)의 화면 내 예측은 인코더에서 영상을 적절하게 사각형 블록으로 분할하고, 블록 주변의 먼저 재구성된 참조샘플들을 이용하여 예측블록을 형성한다. 인코더는 화면 내 예측 모드에서 각 PU(Prediction Unit)에 대하여 MIP(Matrix-based weighted Intra Prediction) 적용 여부, MIP에서 matrix의 인덱스, MRL(Multi Reference Line)의 인덱스, DC/Planar/Angular 모드에 대한 최적모드를 고려하여 각 정보를 디코더로 전송하며 각 후보모드들의 압축효율을 비교하는 과정에서 높은 연산량을 요구한다. 본 논문에서는 이러한 모드 결정은 원본영상으로도 대략적인 결정이 가능하다는 전제를 가지고 NN(Nueral Netwrok)의 일종인 CNN(Convolutional Nerual Network)를 이용하여 복잡한 모드 결정 방법을 생략하는 방법을 제안한다.
Journal of the Korean Society for Precision Engineering
/
v.11
no.1
/
pp.138-149
/
1994
This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.4
/
pp.365-370
/
1999
This paper describes the Weekly Load Forecasting Expert System(Named WLoFy) which was developed and implemented for Korea Electric Power Corporation(KEPCO). WLoFy was designed to provide user oriented features with a graphical user interface to improve the user interaction. The various forecasting models such as exponential smoothing, multiple regression, artificial nerual networks, rult-based model, and relative coefficient model also have been included in WLofy to increase the forecasting accuracy. The simulation based on historical data shows that the weekly forecasting results form WLoFy is an improvement when compared to the results from the conventional methods. Especially the forecasting accuracy on special days has been improved remakably.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.4
/
pp.419-427
/
1999
We propose an algorithm for obtaining the optimal node number of hidden units in dynamic neural networks. The dynamic nerual networks comprise of dynamic neural units and neural processor consisting of two dynamic neural units; one functioning as an excitatory neuron and the other as an inhibitory neuron. Starting out with basic network structure to solve the problem of control, we find optimal neural structure by multiplication and combining dynamic neural unit. Numerical examples are presented for nonlinear systems. Those case studies showed that the proposed is useful is practical sense.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.