• 제목/요약/키워드: neighbor information

검색결과 1,182건 처리시간 0.035초

The privacy protection algorithm of ciphertext nearest neighbor query based on the single Hilbert curve

  • Tan, Delin;Wang, Huajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.3087-3103
    • /
    • 2022
  • Nearest neighbor query in location-based services has become a popular application. Aiming at the shortcomings of the privacy protection algorithms of traditional ciphertext nearest neighbor query having the high system overhead because of the usage of the double Hilbert curves and having the inaccurate query results in some special circumstances, a privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve has been proposed. This algorithm uses a single Hilbert curve to transform the two-dimensional coordinates of the points of interest into Hilbert values, and then encrypts them by the order preserving encryption scheme to obtain the one-dimensional ciphertext data which can be compared in numerical size. Then stores the points of interest as elements composed of index value and the ciphertext of the other information about the points of interest on the server-side database. When the user needs to use the nearest neighbor query, firstly calls the approximate nearest neighbor query algorithm proposed in this paper to query on the server-side database, and then obtains the approximate nearest neighbor query results. After that, the accurate nearest neighbor query result can be obtained by calling the precision processing algorithm proposed in this paper. The experimental results show that this privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve is not only feasible, but also optimizes the system overhead and the accuracy of ciphertext nearest neighbor query result.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

Multiple token-based neighbor discovery for directional sensor networks

  • Nagaraju, Shamanth;Gudino, Lucy J.;Sood, Nipun;Chandran, Jasmine G.;Sreejith, V.
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.351-365
    • /
    • 2020
  • Directional sensor networks (DSNs) can significantly improve the performance of a network by employing energy efficient communication protocols. Neighbor discovery is a vital part of medium access control (MAC) and routing protocol, which influences the establishment of communication between neighboring nodes. Neighbor discovery is a challenging task in DSNs due to the limited coverage provided by directional antennas. Furthermore, in these networks, communication can only take place when the beams of the directional antennas are pointed toward each other. In this article, we propose a novel multiple token-based neighbor discovery (MuND) protocol, in which multiple tokens are transmitted based on an area exploration algorithm. The performance of the protocol is evaluated using the Cooja simulator. The simulation results reveal that the proposed MuND protocol achieves lower neighbor discovery latency, with a 100% neighbor discovery ratio, and has a relatively low communication overhead and low energy consumption.

퍼지 K-Nearest Neighbor에 의한 정보검색시스템의 성능 향상 (Performance Improvement of Information Retrieval System using Fuzzy K-Nearest Neighbor)

  • 현우석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.367-369
    • /
    • 2005
  • 현대인들이 계속 쏟아지는 정보로부터 자신에게 필요한 정보만을 제한된 시간 안에 검색하는 일은 쉬운 일이 아니다. 컴퓨터를 이용하여 제한된 시간 내에 원하는 정보를 검색하고자 하는 정보검색 분야에서는 성능을 향상시키기 위한 연구가 활발히 진행되어 오고 있다. 본 논문에서는 정보검색 시스템의 성능을 향상시키고자 퍼지 K-Nearest Neighbor에 의한 정보검색시스템(IRS-FKNN: Information Retrieval System using Fuzzy K-Nearest Neighbor)을 제안한다. 제안하는 시스템은 기존의 시스템과 비교했을 때 검색결과의 신뢰성을 높이게 되어 시스템의 성능을 향상시키게 되었다.

  • PDF

지역적 k값을 사용한 k-Nearest Neighbor Classifier (k-Nearest Neighbor Classifier using Local Values of k)

  • 이상훈;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.193-195
    • /
    • 2003
  • 본 논문에서는 k-Nearest Neighbor(k-NN) 알고리즘을 최적화하기 위해 지역적으로 다른 k(고려할 neighbor의 개수)를 사용하는 새로운 방법을 제안한다. 인스턴스 공간(instance space)에서 노이즈(noise)의 분포가 지역적(local)으로 다를 경우, 각 지점에서 고려해야 할 최적의 이웃 인스턴스(neighbor)의 수는 해당 지점에서의 국부적인 노이즈 분포에 따라 다르다. 그러나 기존의 방법은 전체 인스턴스 공간에 대해 동일한 k를 사용하기 때문에 이러한 인스턴스 공간의 지역적인 특성을 고려하지 못한다. 따라서 본 논문에서는 지역적으로 분포가 다른 노이즈 문제를 해결하기 위해 인스턴스 공간을 여러 개의 부분으로 나누고, 각 부분에 최적화된 k의 값을 사용하여 kNN을 수행하는 새로운 방법인 Local-k Nearest Neighbor 알고리즘(LkNN Algorithm)을 제안한다. LkNN을 통해 생성된 k의 집합은 인스턴스 공간의 각 부분을 대표하는 값으로, 해당 지역의 인스턴스가 고려해야 할 이웃(neighbor)의 수를 결정지어준다. 제안한 알고리즘에 적합한 데이터의 도메인(domain)과 그것의 향상된 성능은 UCI ML Data Repository 데이터를 사용한 실험을 통해 검증하였다.

  • PDF

Sparse-Neighbor 영상 표현 학습에 의한 초해상도 (Super Resolution by Learning Sparse-Neighbor Image Representation)

  • 엄경배;최영희;이종찬
    • 한국정보통신학회논문지
    • /
    • 제18권12호
    • /
    • pp.2946-2952
    • /
    • 2014
  • 표본 기반 초해상도(Super Resolution 이하 SR) 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나, 네이버 임베딩은 국부 학습 데이터 집합의 크기가 너무 작기 때문에 이에 따른 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)을 이용한 Sparse-Neighbor 영상 표현 학습 방법에 기반한 새로운 알고리즘을 제안하였다. 저해상도 입력 영상이 주어지면 bicubic 보간법을 이용하여 확대된 영상을 얻고, 이 확대된 영상으로부터 패치를 얻은 후 저주파 패치인지 고주파 패치 인지를 판별한 후 각 영상 패치의 가중치를 얻은 후 두 개의 SVR을 훈련하였으며 훈련된 SVR을 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 네이버 임베딩 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.

IPv6 Neighbor Discovery가 호스트 이동성 지원에 미치는 영향 평가 (Evaluation of Effect of IPv6 Neighbor Discovery on Host mobility Support)

  • 한정준;최현덕;우미애
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (C)
    • /
    • pp.439-441
    • /
    • 2003
  • 사용자의 인터넷 환경이 점차 무선 접속을 통한 인터넷의 사용과 실시간 응용 데이터의 사용이 늘어가는 추세에 따라. 이동 인터넷 서비스를 하기 위한 방안으로 Mobile If와 Mobile IPv6가 제시되었다. 본 논문에서는 Mobile IPv6 환경에서 Neighbor Discovery 중 Router Solicitation과 Router Advertisement가 호스트의 이동성 지원에 미치는 영향을 분석하였다. Neighbor Discovery 메시지들의 주기를 변경하여, 실제 구현, 측정하여 Handoff의 효율성과 전송 대역폭 overhead의 상관관계를 알아보았다.

  • PDF

OPEED: Optimal Energy-Efficient Neighbor Discovery Scheme in Opportunistic Networks

  • Yang, Dongmin;Shin, Jongmin;Kim, Jeongkyu;Kim, Geun-Hyung
    • Journal of Communications and Networks
    • /
    • 제17권1호
    • /
    • pp.34-39
    • /
    • 2015
  • In opportunistic networks, it is difficult to predict when a node encounters others and how long it keeps in contact with another. Nodes continually attempt to explore neighbor nodes in the vicinity to transmit data. In battery-operated devices, this persistent exploration consumes a great deal of energy. In this paper, we propose an optimal energy-efficient neighbor discovery scheme (OPEED) that guarantees neighbor discovery within a delay bound. Through performance evaluation, we show that the OPEED scheme consumes 33%-83% less energy than other schemes.

내용 기반 멀티미디어 정보 검색을 위한 근사 k-최근접 데이타 탐색 알고리즘 (An Approximate k-Nearest Neighbor Search Algorithm for Content- Based Multimedia Information Retrieval)

  • 송광택;장재우
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권2호
    • /
    • pp.199-208
    • /
    • 2000
  • 내용 기반 멀티미디어 정보 검색에서 유사성에 기반한 k-최근접 데이타 탐색 질의는 매우 중요한 질의이다 일반적으로 멀티미디어 데이타는 고차원 특정 벡터로 표현되기 때문에 기존의 k-최근접 탐색 알고리즘은 멀티미디어 정보 검색에 효율적이지 못하다. 따라서 이러한 응용을 위해서는 다소 근사적 검색 결과를 가져오더라도 빠른 검색 성능을 제공하는 근사 k-최근접 탐색 알고리즘이 요구된다. 이를 위해 본 논문에서는 고차원 데이타를 위한 새로운 근사 k-최근접 탐색 알고리즘을 제안한다. 아울러, 제안하는 근사 k-최근접 탐색 알고리즘을 기존의 알고리즘과 검색 성능변에서 성능 평가를 수행한다. 성능 평가 결과, 기존 알고리즘의 검색 성능을 크게 개선할 수 있었다.

  • PDF

정보이론을 이용한 K-최근접 이웃 알고리즘에서의 속성 가중치 계산 (Calculating Attribute Weights in K-Nearest Neighbor Algorithms using Information Theory)

  • 이창환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.920-926
    • /
    • 2005
  • 최근접 이웃(k nearest neighbor) 알고리즘은 새로운 개체의 목표값을 예측하기 위하여 과거의 유사한 데이타를 이용하여 그 값을 예측하는 것이다. 이 방법은 기계학습의 여러 분야에서 그 유용성을 검증받아 널리 사용되고 있다. 이러한 kNN 알고리즘에서 목표값을 예측할 때 각 속성의 가중치를 동일하게 고려하는 것은 좋은 성능을 보장할 수 없으며 따라서 kNN에서 각 속성에 대한 가중치를 적절히 계산하는 것은 kNN 알고리즘의 성능을 결정하는 중요한 요소중의 하나이다. 본 논문에서는 정보이론을 이용하여 kNN 에서의 속성의 가중치를 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목표 속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN 방법의 성능을 향상시킨다. 개발된 알고리즘은 다수의 실험 데이타를 이용하여 그 성능을 비교하였다.