• Title/Summary/Keyword: negative-Gm tuning

Search Result 2, Processing Time 0.015 seconds

A Low Power, Wide Tuning Range VCO with Two-Step Negative-Gm Calibration Loop (2단계 자동 트랜스컨덕턴스 조절 기능을 가진 저전력, 광대역 전압제어 발진기의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents a low-power, wide tuning range VCO with automatic two-step negative-Gm calibration loop to compensate for the process, voltage and temperature variation. To cover the wide tuning range, digital automatic negative-Gm tuning loop and analog automatic amplitude calibration loop are used. Adaptive body biasing (ABB) technique is also adopted to minimize the power consumption by lowering the threshold voltage of transistors in the negative-Gm core. The power consumption is 2 mA to 6mA from a 1.2 V supply. The VCO tuning range is 2.65 GHz, from 2.35 GHz to 5 GHz. And the phase noise is -117 dBc/Hz at the 1 MHz offset when the center frequency is 3.2 GHz.

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

  • Ryu, Hyuk;Ha, Keum-Won;Sung, Eun-Taek;Baek, Donghyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • This paper proposes a new series-coupled voltage-controlled oscillator (VCO). The proposed VCO consists of four current-reuse Armstrong VCOs (CRA-VCOs) coupled by four transformers. The series-coupling, current-reuse, and Armstrong topologies improve the phase noise performance by increasing the negative-Gm of the VCO core with half the current consumption of a conventional differential VCO. The proposed VCO consumes 6.54 mW at 9.78 GHz from a 1-V supply voltage. The measured phase noise is -115.1 dBc/Hz at an offset frequency of 1 MHz, and the FoM is -186.5 dBc/Hz. The frequency tuning range is from 9.38-10.52 GHz. The core area is $0.49mm^2$ in a $0.13-{\mu}m$ CMOS process.