• Title/Summary/Keyword: negative binomial model

Search Result 203, Processing Time 0.025 seconds

Motorcycle Accident Model at Roundabout in Korea using ZAM (ZAM을 이용한 국내 회전교차로 오토바이 사고모형)

  • Park, Byung Ho;Lim, Jin Kang;Na, Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.107-113
    • /
    • 2014
  • The goal of this study is to develop the accident models of motorcycle at roundabouts. In the pursuing the above, this study gives particular attentions to developing the appropriate models using ZAM. The main results are as follows. First, the evaluation of various developed models by the Vuong statistic and over-dispersion parameter shows that ZINB is analyzed to be optimal among Poisson, NB, ZIP(zero-inflated Poisson) and ZINB regression models. Second, the traffic volume, width of central island and width of approach are evaluated to be important variables to the accidents. Finally, the common variables that affect to the accident are selected to be traffic volume and width of approach. This study might be expected to give some implications to the accident research on the roundabout by motorcycle.

A study on the impact analysis of blank sailing in the shipping industry using poisson regression analysis (포아송 회귀분석을 이용한 해운선사의 블랭크 세일링 영향 분석 연구)

  • Won-Hyeong Ryu;Bong-Keun Choi;Jong-Hoon Kim;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.120-121
    • /
    • 2023
  • Recently, there has been a continuous imbalance between the demand and supply in the shipping industry. Consequently, shipping companies are implementing blank sailing to adjust the supply of vessels and achieve a balance between demand and supply. Blank sailing can create negative ripple effects by delaying cargo transportation, so this study uses Poisson regression analysis,

  • PDF

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.

A Development of Traffic Accident Models at 4-legged Signalized Intersections using Random Parameter : A Case of Busan Metropolitan City (Random Parameter를 이용한 4지 신호교차로에서의 교통사고 예측모형 개발 : 부산광역시를 대상으로)

  • Park, Minho;Lee, Dongmin;Yoon, Chunjoo;Kim, Young Rok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.65-73
    • /
    • 2015
  • PURPOSES : This study tries to develop the accident models of 4-legged signalized intersections in Busan Metropolitan city with random parameter in count model to understanding the factors mainly influencing on accident frequencies. METHODS : To develop the traffic accidents modeling, this study uses RP(random parameter) negative binomial model which enables to take account of heterogeneity in data. By using RP model, each intersection's specific geometry characteristics were considered. RESULTS : By comparing the both FP(fixed parameter) and RP modeling, it was confirmed the RP model has a little higher explanation power than the FP model. Out of 17 statistically significant variables, 4 variables including traffic volumes on minor roads, pedestrian crossing on major roads, and distance of pedestrian crossing on major/minor roads are derived as having random parameters. In addition, the marginal effect and elasticity of variables are analyzed to understand the variables'impact on the likelihood of accident occurrences. CONCLUSIONS : This study shows that the uses of RP is better fitted to the accident data since each observations'specific characteristics could be considered. Thus, the methods which could consider the heterogeneity of data is recommended to analyze the relationship between accidents and affecting factors(for example, traffic safety facilities or geometrics in signalized 4-legged intersections).

Prediction of the Number of Food Poisoning Occurrences by Microbes (원인균별 식중독 발생 건수 예측)

  • Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.923-932
    • /
    • 2013
  • This paper proposes a method to predict the number of foodborne disease outbreaks by microbes. The weekly data of food poisoning occurrences by microbes in Korea contain many zero-valued observations and have dependency between outbreaks. In order to model both phenomena, the number of food poisonings is predicted by an autoregressive model and the probabilities of food poisoning occurrences by microbes (given the total of food poisonings) are estimated by the baseline category logit model. The predicted number of foodborne disease outbreaks by a microbe is obtained by multiplying the predicted number of foodborne disease outbreaks and the estimated probability of the food poisoning by the corresponding microbe. The mean squared error and the mean absolute value error are evaluated to compare the performances of the proposed method and the zero-inflated model.

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.

Accident Models of Circular Intersection by Cause Using ZAM (ZAM을 이용한 원형교차로 원인별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • This study deals with the traffic accidents of circular intersections in Korea. The goal of this study is to develop the traffic accident models using ZAM. The main results are as follows. First, in the case of 'violating the operational method of intersection', ZINB(zero-inflatednegative binomial) models were analyzed to be the best fit to the data. Second, in the case of' no maintaining the safe distance', ZINB models were also analyzed to be the best fit to the data. Finally, such the common variables as traffic volume and width of circular roadway were selected as the independent variables. The more traffic volume and the less width of circulatory roadway were evaluated to make the more accidents. Such the specific variables as the number of approach lanes and speed reduction facilities were selected as the explanatory variables. The more approach lanes and the less speed reduction facilities were evaluated to give the more accidents. This study might be expected to give some implications to the accident research on the circular intersections.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Marginal Effect Analysis of Travel Behavior by Count Data Model (가산자료모형을 기초로 한 통행행태의 한계효과분석)

  • 장태연
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • In general, the linear regression model has been used to estimate trip generation in the travel demand forecasting procedure. However, the model suffers from several methodological limitations. First, trips as a dependent variable with non-negative integer show discrete distribution but the model assumes that the dependent variable is continuously distributed between -$\infty$ and +$\infty$. Second, the model may produce negative estimates. Third, even if estimated trips are within the valid range, the model offers only forecasted trips without discrete probability distribution of them. To overcome these limitations, a poisson model with a assumption of equidispersion has frequently been used to analyze count data such as trip frequencies. However, if the variance of data is greater than the mean. the poisson model tends to underestimate errors, resulting in unreliable estimates. Using overdispersion test, this study proved that the poisson model is not appropriate and by using Vuong test, zero inflated negative binomial model is optimal. Model reliability was checked by likelihood test and the accuracy of model by Theil inequality coefficient as well. Finally, marginal effect of the change of socio-demographic characteristics of households on trips was analyzed.