• 제목/요약/키워드: nearshore hydrodynamics

검색결과 8건 처리시간 0.021초

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

완전비선형 Boussinesq 모형의 천수 및 쇄파 특성 (Shoaling and Breaking Characteristics of Fully Nonlinear Boussinesq Model)

  • 윤종태;박승민
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.29-33
    • /
    • 2005
  • The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport, and design of coastal structures. Numerical experiments are conducted to identify the shoaling and breaking characteristics of a fully nonlinear Boussinesq equation-based model. Simulated shoaling showed good agreement with the Shouto's formula, and the results of the breaking experiment agreed well with experimented data, over several beach profile.

연안류에 대한 2D-H 사면구조에 기초한 수치모델링 (2-DH Quadtree based Modelling of Longshore Current)

  • 박구용
    • 한국해안해양공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 파랑으로 인해 발생되는 흐름은 연안에서 질량수송의 일련의 과정을 야기시키므로 연안유역의 관리에 파랑과 흐름의 상호작용에 대한 정확한 이해가 요구된다. 본 논문은 적응가능한 사면 구조 격자에 근간을 둔 파랑장과 흐름장을 혼합한 수치모델을 기술하였다. 사용한 모델은 쇄파, 천수, 굴절, 회절, 파랑과 흐름의 상호작용, 평균해면의 저하와 상승, 혼합 과정, 바닥 마찰 효과 그리고 해안선에 접한 운동 등을 해석할 수 있다. 주기와 수심으로 평균한 지배 방정식은 단계적으로 엇갈린 사면구조 격자에 적응 가능한 Adam-Bashforth 2차 유한 차분 기법으로 양해적으로 모델화 되었다. 본 모델로부터의 결과는 평면 해변에서 경사 입사파에 의해 발생된 연안류의 실험치와 타당한 일치를 보였다.

  • PDF

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

유출유의 초기 확산예측을 위한 고해상도 결합모형 개발 (Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill)

  • 손상영;이칠우;윤현덕;정태화
    • 한국해안·해양공학회논문집
    • /
    • 제29권4호
    • /
    • pp.189-197
    • /
    • 2017
  • 최근 빈번하게 발생하는 해상 유류사고에 대해 초기에 신속히 대응하기 위해서는 정확성 높은 수치해석 모형의 개발 및 적용이 필수적이다. 본 연구에서는 불규칙한 지형적 변화가 존재하는 근해역에서 유출유의 정확한 확산예측을 위하여 비선형성, 분산성, 난류 및 회전류 효과 등이 포함된 수심적분형 Boussinesq 모형과 유류의 이송-확산-변형모형을 통합함으로써 유출유 초기확산 예측을 위한 결합모형을 개발하였다. 개발된 모형은 지형적 복잡성 및 그에 따른 실제 흐름의 특성을 지닌 실 해역에 적용함으로써 모형의 활용성을 검토하였다. 고해상도의 해상 조건 재현이 가능한 본 개발모형은 기후변화 등에 의해 점차 강화되는 해상 기상의 극한조건에서의 유류 재해에 대비할 수 있는 방재시스템 구축에 도움이 될 것으로 기대된다.

Proposal of Parameter Range that Offered Optimal Performance in the Coastal Morphodynamic Model (XBeach) Through GLUE

  • Bae, Hyunwoo;Do, Kideok;Kim, Inho;Chang, Sungyeol
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.251-269
    • /
    • 2022
  • The process-based XBeach model has numerous empirical parameters because of insufficient understanding of hydrodynamics and sediment transport on the nearshore; hence, it is necessary to calibrate parameters to apply to various study areas and wave conditions. Therefore, the calibration process of parameters is essential for the improvement of model performance. Generally, the trial-and-error method is widely used; however, this method is passive and limited to various and comprehensive parameter ranges. In this study, the Generalized Likelihood Uncertainty Estimation (GLUE) method was used to estimate the optimal range of three parameters (gamma, facua, and gamma2) using morphological field data collected in Maengbang beach during the four typhoons that struck from September to October 2019. The model performance and optimal range of empirical parameters were evaluated using Brier Skill Score (BSS) along with the baseline profiles, sensitivity, and likelihood density analysis of BSS in the GLUE tools. Accordingly, the optimal parameter combinations were derived when facua was less than 0.15 and simulated well the shifting shape, from crescentic sand bar to alongshore uniform sand bars in the surf zone of Maengbang beach after storm impact. However, the erosion and accretion patterns nearby in the surf zone and shoreline remain challenges in the XBeach model.

Impacts of sea-level rise on port facilities

  • Son, Chang-Bae;Kim, Chang-Je;Jang, Won-Yil;Matsubara, Yuhei;Noda, Hedeaki;Kim, Mi-Kum
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.173-177
    • /
    • 2006
  • From the viewpoint of coastal hydrodynamics, one of the most important effects of global warming is a sea-level rise in coastal areas. In the present study, impacts on port facilities against sea-level rise were investigated. The sea-level rise causes the increase of the water depth, and it generates variations on the wave height, buoyancy, tidal system and nearshore current system and so on. The increase of water depth gives rise to the decrease of crown height of the structure and it causes increase of wave overtopping quantity. It may flood the port zone and its facilities, and may decrease harbor tranquility. It also leads to difficulties on navigation, mooring and loading/unloading at the port. Increase in water depth also causes increase of wave height in surf zone. This high wave makes structures unstable and may cause them to collapse during storm. In addition, increase in buoyant force due to sea-level rise also makes the gravity type structures unstable. Consequently, theses variations due to sea-level rise will cause functional deterioration of port facilities. In order to protect port facilities from the functional deterioration, reinforcement plan is required such as raising the crown height and increase in block weight and so on. Hence proper estimation method for the protection cost is necessary in order to protect port facilities efficiently. Moreover response strategies and integrated coastal zone management plan is required to maintain the function of port facilities. A simple estimation of cost for breakwaters in Korea was performed in the present study.

  • PDF