Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1615-1615
/
2001
During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.
Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
Journal of Animal Environmental Science
/
v.18
no.3
/
pp.257-266
/
2012
Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.
Perez Marin, M.D.;De Pedro, E.;Garcia Olmo, J.;Garrido Varo, A.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.4107-4107
/
2001
Previous works have shown the viability of NIRS technology for the prediction of fatty acids in Iberian pig fat, but although the resulting equations showed high precision, in the predictions of new samples important fluctuations were detected, greater with the time passed from calibration development to NIRS analysis. This fact makes the use of NIRS calibrations in routine analysis difficult. Moreover, this problem only appears in products like fat, that show spectrums with very defined absorption peaks at some wavelengths. This circumstance causes a high sensibility to small changes of the instrument, which are not perceived with the normal checks. To avoid these inconveniences, the software WinISI 1.04 has a mathematic algorithm that consist of create a “Repeatability File”. This file is used during calibration development to minimize the variation sources that can affect the NIRS predictions. The objective of the current work is the evaluation of the use of a repeatability file in quantitative NIRS analysis of Iberian pig fat. A total of 188 samples of Iberian pig fat, produced by COVAP, were used. NIR data were recorded using a FOSS NIRSystems 6500 I spectrophotometer equipped with a spinning module. Samples were analysed by folded transmission, using two sample cells of 0.1mm pathlength and gold surface. High accuracy calibration equations were obtained, without and with repeatability file, to determine the content of six fatty acids: miristic (SECV$\sub$without/=0.07% r$^2$$\sub$without/=0.76 and SECV$\sub$with/=0.08% r$^2$$\sub$with/=0.65), Palmitic (SECV$\sub$without/=0.28 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.24% r$^2$$\sub$with/=0.98), palmitoleic (SECV$\sub$without/=0.08 r$^2$$\sub$without/=0.94 and SECV$\sub$with/=0.09% r$^2$$\sub$with/=0.92), Stearic (SECV$\sub$without/=0.27 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.29% r$^2$$\sub$with/=0.96), oleic (SECV$\sub$without/=0.20 r$^2$$\sub$without/=0.99 and SECV$\sub$with/=0.20% r$^2$$\sub$with/=0.99) and linoleic (SECV$\sub$without/=0.16 r$^2$$\sub$without/=0.98 and SECV$\sub$with/=0.16% r$^2$$\sub$with/=0.98). The use of a repeatability file like a tool to reduce the variation sources that can disturbed the prediction accuracy was very effective. Although in calibration results the differences are negligible, the effect caused by the repeatability file is appreciated mainly when are predicted new samples that are not in the calibration set and whose spectrum were recorded a long time after the equation development. In this case, bias values corresponding to fatty acids predictions were lower when the repeatability file was used: miristic (bias$\sub$without/=-0.05 and bias$\sub$with/=-0.04), Palmitic (bias$\sub$without/=-0.42 and bias$\sub$with/=-0.11), Palmitoleic (bias$\sub$without/=-0.03 and bias$\sub$with/=0.03), Stearic (bias$\sub$without/=0.47 and bias$\sub$with/=0.28), oleic (bias$\sub$without/=0.14 and bias$\sub$with/=-0.04) and linoleic (bias$\sub$without/=0.25 and bias$\sub$with/=-0.20).
Kim, Ji Hea;Lee, Ki Won;Oh, Mirae;Choi, Ki Choon;Yang, Seung Hak;Kim, Won Ho;Park, Hyung Soo
Journal of The Korean Society of Grassland and Forage Science
/
v.39
no.2
/
pp.114-120
/
2019
This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation($R^2$) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The $R^2$ and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.
Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Hwang Kyung-Jun;Jung Ha-Yeon;Ko Moon-Suck
Journal of The Korean Society of Grassland and Forage Science
/
v.26
no.1
/
pp.53-62
/
2006
Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).
This study was carried out to build a database system for amylose and protein contents of rice germplasm based on NIRS (Near-Infrared Reflectance Spectroscopy) analysis data. The average waxy type amylose contents was 8.7% in landrace, variety and weed type, whereas 10.3% in breeding line. In common rice, the average amylose contents was 22.3% for landrace, 22.7% for variety, 23.6% for weed type and 24.2% for breeding line. Waxy type resources comprised of 5% of the total germplasm collections, whereas low, intermediate and high amylose content resources share 5.5%, 20.5% and 69.0% of total germplasm collections, respectively. The average percent of protein contents was 8.2 for landrace, 8.0 for variety, and 7.9 for weed type and breeding line. The average Variability Index Value was 0.62 in waxy rice, 0.80 in common rice, and 0.51 in protein contents. The accession ratio in arbitrary ranges of landrace was 0.45 in amylose contents ranging from 6.4 to 8.7%, and 0.26 in protein ranging from 7.3 to 8.2%. In the variety, it was 0.32 in amylose ranging from 20.1 to 22.7%, and 0.51 in protein ranging from 6.1 to 8.3%. And also, weed type was 0.67 in amylose ranging from 6.6 to 9.7%, and 0.33 in protein ranging from 7.0 to 7.9%, whereas, in breeding line it was 0.47 in amylose ranging from 10.0 to 12.0%, and 0.26 in protein ranging from 7.0 to 7.9%. These results could be helpful to build database programming system for germplasm management.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1247-1247
/
2001
Constituents of animal biofluids such as milk, blood and urine contain information specifically related to metabolic and health status of the ruminant animals. Some changes in composition of biofluids can be attributed to disease response of the animals. Mastitis is a major problem for the global dairy industry and causes substantial economic losses from decreasing milk production and reducing milk quality. The purpose of this study was to investigate potential of NIRS combined with multivariate analysis for cow's mastitis diagnosis based on NIR spectra of milk, blood and urine. A total of 112 bulk milk, urine and blood samples from 4 Holstein cows were analyzed. The milk samples were collected from morning milking. The urine samples were collected before morning milking and stored at -35$^{\circ}C$ until spectral analysis. The blood samples were collected before morning milking using a catheter inserted into the carotid vein. Heparin was added to blood samples to prevent coagulation. All milk samples were analyzed for somatic cell count (SCC). The SCC content in milk was used as indicator of mastitis and as quantitative parameter for respective urine and blood samples collected at same time. NIR spectra of blood and milk samples were obtained by InfraAlyzer 500 spectrophotometer, using a transflectance mode. NIR spectra of urine samples were obtained by NIR System 6500 spectrophotometer, using 1 mm sample thickness. All samples were divided into calibration set and test set. Class variable was assigned for each sample as follow: healthy (class 1) and mastitic (class 2), based on milk SCC content. SIMCA was implemented to create models of the respective classes based on NIR spectra of milk, blood or urine. For the calibration set of samples, SIMCA models (model for samples from healthy cows and model for samples from mastitic cows), correctly classified from 97.33 to 98.67% of milk samples, from 97.33 to 98.61% of urine samples and from 96.00 to 94.67% of blood samples. From samples in the test set, the percent of correctly classified samples varied from 70.27 to 89.19, depending mainly on spectral data pretreatment. The best results for all data sets were obtained when first derivative spectral data pretreatment was used. The incorrect classified samples were 5 from milk samples,5 and 4 from urine and blood samples, respectively. The analysis of changes in the loading of first PC factor for group of samples from healthy cows and group of samples from mastitic cows showed, that separation between classes was indirect and based on influence of mastitis on the milk, blood and urine components. Results from the present investigation showed that the changes that occur when a cow gets mastitis influence her milk, urine and blood spectra in a specific way. SIMCA allowed extraction of available spectral information from the milk, urine and blood spectra connected with mastitis. The obtained results could be used for development of a new method for mastitis detection.
Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.70-70
/
2017
This study was conducted to characterize the amylose and protein contents of 4,948 rice landrace germplasm using the NIRS model developed in the previous study. The amylose contents estimated by NIRS in the standard rice were Sinseonchal (6.881%) 4.994%, Chucheong (19.731%) 18.633%, Goami (23.246%) 20.548%. Protein contents were Sinseonchal (6.890%) 6.824%, Chucheong (6.350%) 6.869%, Goami (6.777%) 7.839%. The NIRS analysis showed that 1.1-2.7%point lower in amylose and 0.4-0.6%point higher in protein than standard contents. The average amylose content of the germplasm was 20.39% with a range of 3.97-37.13%. The average protein content was 8.17% with a range of 5.20-17.45%. Amylose contents with a range of 20.06-27.02% represented 62.20% of the germplasm. Protein contents with a range of 6.78-9.75% represented 81.60% of the germplasm. Korean landrace comprised 24.9% among the 4,948 germplasm collected from 41 countries. A specific range of amylose contents showed in Korea 16.58-20.06%, in Japan 20.06-23.25%, in North Korea 23.25-27.02% and in China 27.02-37.13%. Protein contents exhibited 5.20-17.45% evenly in the whole landraces, whereas Chinese landrace particularly observed with 6.78-8.27% and 9.75-17.45%. Fifty resources were selected with low and high amylose ranging from 3.97-6.66% to 30.41-37.13% respectively. Similarly fifty resources were selected with low and high protein ranging from 5.20-6.09% to 13.21-17.45% respectively. Landraces with higher protein should be adapted to practical utilization of food sources.
This study was conducted to measure tea surface colors using the visible bands ($400{\sim}700$ nm) with near-infrared spectroscopy (NIRS). The surface colors of 117 tea products were measured with a colorimeter. The $a^*/b^*$ (CIE color scale) or a/b (Hunter color scale) ratios in different tea products accounted for about 99.7% of the variation in fermentation degree (FD), indicating that the $a^*/b^*$ (a/b) ratio is a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRS. Calibration equations for surface colors and fermentation degree were developed using the regression method of modified partial least-squares (MPLS) with internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with $0.779{\sim}0.999$, indicating that the whole bands ($400{\sim}2500\;nm$) with NIRS could be used to rapidly measure traits related to surface color, fermentation degree and other chemical components in tea products with high precision and ease at a time.
This study was done to measure the color and catechins contents in processed teas using the whole bands (400~2500 nm) with near-infrared spectroscopy(NIRS). The powder colors of 109 processed teas were measured with a colorimeter. The a/b ratios in Hunter color scale in processed teas accounted for about 98.9% of the variation in the fermentation degree(FD), indicating that the a/b ratio was a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRSystem. The calibration equations for powder colors were developed using the regression method of modified partial least squares(MPLS) with the internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with 0.996~1.00, indicating that the visible bands(400~700 nm) with NIRS could be used to rapidly measure the variables related to powder color and fermentation degree. Also another powders of 137 processed teas were scanned at 780~2500 nm bands in the reflectance mode. The calibration equations were developed using the regression method of MPLS with the internal cross validation. The equations had low SECV, and high $R^2$ (0.896~0.983) values, showing that NIRS could be used to rapidly discriminate the contents of EGC($R^2$=0.919), EC(0.896), EGCg(0.978), ECg(0.905) and total catechins(0.983) in processed teas with high precision and ease.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.