• Title/Summary/Keyword: near-infrared spectroscopy(NIRS)

Search Result 221, Processing Time 0.029 seconds

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

THE EFFECT OF THE REPEATABILITY FILE IN THE NIRS EATTY ACIDS ANALYSIS OF ANIMAL EATS

  • Perez Marin, M.D.;De Pedro, E.;Garcia Olmo, J.;Garrido Varo, A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4107-4107
    • /
    • 2001
  • Previous works have shown the viability of NIRS technology for the prediction of fatty acids in Iberian pig fat, but although the resulting equations showed high precision, in the predictions of new samples important fluctuations were detected, greater with the time passed from calibration development to NIRS analysis. This fact makes the use of NIRS calibrations in routine analysis difficult. Moreover, this problem only appears in products like fat, that show spectrums with very defined absorption peaks at some wavelengths. This circumstance causes a high sensibility to small changes of the instrument, which are not perceived with the normal checks. To avoid these inconveniences, the software WinISI 1.04 has a mathematic algorithm that consist of create a “Repeatability File”. This file is used during calibration development to minimize the variation sources that can affect the NIRS predictions. The objective of the current work is the evaluation of the use of a repeatability file in quantitative NIRS analysis of Iberian pig fat. A total of 188 samples of Iberian pig fat, produced by COVAP, were used. NIR data were recorded using a FOSS NIRSystems 6500 I spectrophotometer equipped with a spinning module. Samples were analysed by folded transmission, using two sample cells of 0.1mm pathlength and gold surface. High accuracy calibration equations were obtained, without and with repeatability file, to determine the content of six fatty acids: miristic (SECV$\sub$without/=0.07% r$^2$$\sub$without/=0.76 and SECV$\sub$with/=0.08% r$^2$$\sub$with/=0.65), Palmitic (SECV$\sub$without/=0.28 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.24% r$^2$$\sub$with/=0.98), palmitoleic (SECV$\sub$without/=0.08 r$^2$$\sub$without/=0.94 and SECV$\sub$with/=0.09% r$^2$$\sub$with/=0.92), Stearic (SECV$\sub$without/=0.27 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.29% r$^2$$\sub$with/=0.96), oleic (SECV$\sub$without/=0.20 r$^2$$\sub$without/=0.99 and SECV$\sub$with/=0.20% r$^2$$\sub$with/=0.99) and linoleic (SECV$\sub$without/=0.16 r$^2$$\sub$without/=0.98 and SECV$\sub$with/=0.16% r$^2$$\sub$with/=0.98). The use of a repeatability file like a tool to reduce the variation sources that can disturbed the prediction accuracy was very effective. Although in calibration results the differences are negligible, the effect caused by the repeatability file is appreciated mainly when are predicted new samples that are not in the calibration set and whose spectrum were recorded a long time after the equation development. In this case, bias values corresponding to fatty acids predictions were lower when the repeatability file was used: miristic (bias$\sub$without/=-0.05 and bias$\sub$with/=-0.04), Palmitic (bias$\sub$without/=-0.42 and bias$\sub$with/=-0.11), Palmitoleic (bias$\sub$without/=-0.03 and bias$\sub$with/=0.03), Stearic (bias$\sub$without/=0.47 and bias$\sub$with/=0.28), oleic (bias$\sub$without/=0.14 and bias$\sub$with/=-0.04) and linoleic (bias$\sub$without/=0.25 and bias$\sub$with/=-0.20).

  • PDF

Evaluation of Moisture and Feed Values for Winter Annual Forage Crops Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 동계사료작물 풀 사료의 수분함량 및 사료가치 평가)

  • Kim, Ji Hea;Lee, Ki Won;Oh, Mirae;Choi, Ki Choon;Yang, Seung Hak;Kim, Won Ho;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.114-120
    • /
    • 2019
  • This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation($R^2$) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The $R^2$ and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.

Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Hwang Kyung-Jun;Jung Ha-Yeon;Ko Moon-Suck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).

Construction of Database System on Amylose and Protein Contents Distribution in Rice Germplasm Based on NIRS Data (벼 유전자원의 아밀로스 및 단백질 성분 함량 분포에 관한 자원정보 구축)

  • Oh, Sejong;Choi, Yu Mi;Lee, Myung Chul;Lee, Sukyeung;Yoon, Hyemyeong;Rauf, Muhammad;Chae, Byungsoo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.124-143
    • /
    • 2019
  • This study was carried out to build a database system for amylose and protein contents of rice germplasm based on NIRS (Near-Infrared Reflectance Spectroscopy) analysis data. The average waxy type amylose contents was 8.7% in landrace, variety and weed type, whereas 10.3% in breeding line. In common rice, the average amylose contents was 22.3% for landrace, 22.7% for variety, 23.6% for weed type and 24.2% for breeding line. Waxy type resources comprised of 5% of the total germplasm collections, whereas low, intermediate and high amylose content resources share 5.5%, 20.5% and 69.0% of total germplasm collections, respectively. The average percent of protein contents was 8.2 for landrace, 8.0 for variety, and 7.9 for weed type and breeding line. The average Variability Index Value was 0.62 in waxy rice, 0.80 in common rice, and 0.51 in protein contents. The accession ratio in arbitrary ranges of landrace was 0.45 in amylose contents ranging from 6.4 to 8.7%, and 0.26 in protein ranging from 7.3 to 8.2%. In the variety, it was 0.32 in amylose ranging from 20.1 to 22.7%, and 0.51 in protein ranging from 6.1 to 8.3%. And also, weed type was 0.67 in amylose ranging from 6.6 to 9.7%, and 0.33 in protein ranging from 7.0 to 7.9%, whereas, in breeding line it was 0.47 in amylose ranging from 10.0 to 12.0%, and 0.26 in protein ranging from 7.0 to 7.9%. These results could be helpful to build database programming system for germplasm management.

Mastitis Diagnostics by Near-infrared Spectra of Cows milk, Blood and Urine Using SIMCA Classification

  • Tsenkova, Roumiana;Atanassova, Stefka
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1247-1247
    • /
    • 2001
  • Constituents of animal biofluids such as milk, blood and urine contain information specifically related to metabolic and health status of the ruminant animals. Some changes in composition of biofluids can be attributed to disease response of the animals. Mastitis is a major problem for the global dairy industry and causes substantial economic losses from decreasing milk production and reducing milk quality. The purpose of this study was to investigate potential of NIRS combined with multivariate analysis for cow's mastitis diagnosis based on NIR spectra of milk, blood and urine. A total of 112 bulk milk, urine and blood samples from 4 Holstein cows were analyzed. The milk samples were collected from morning milking. The urine samples were collected before morning milking and stored at -35$^{\circ}C$ until spectral analysis. The blood samples were collected before morning milking using a catheter inserted into the carotid vein. Heparin was added to blood samples to prevent coagulation. All milk samples were analyzed for somatic cell count (SCC). The SCC content in milk was used as indicator of mastitis and as quantitative parameter for respective urine and blood samples collected at same time. NIR spectra of blood and milk samples were obtained by InfraAlyzer 500 spectrophotometer, using a transflectance mode. NIR spectra of urine samples were obtained by NIR System 6500 spectrophotometer, using 1 mm sample thickness. All samples were divided into calibration set and test set. Class variable was assigned for each sample as follow: healthy (class 1) and mastitic (class 2), based on milk SCC content. SIMCA was implemented to create models of the respective classes based on NIR spectra of milk, blood or urine. For the calibration set of samples, SIMCA models (model for samples from healthy cows and model for samples from mastitic cows), correctly classified from 97.33 to 98.67% of milk samples, from 97.33 to 98.61% of urine samples and from 96.00 to 94.67% of blood samples. From samples in the test set, the percent of correctly classified samples varied from 70.27 to 89.19, depending mainly on spectral data pretreatment. The best results for all data sets were obtained when first derivative spectral data pretreatment was used. The incorrect classified samples were 5 from milk samples,5 and 4 from urine and blood samples, respectively. The analysis of changes in the loading of first PC factor for group of samples from healthy cows and group of samples from mastitic cows showed, that separation between classes was indirect and based on influence of mastitis on the milk, blood and urine components. Results from the present investigation showed that the changes that occur when a cow gets mastitis influence her milk, urine and blood spectra in a specific way. SIMCA allowed extraction of available spectral information from the milk, urine and blood spectra connected with mastitis. The obtained results could be used for development of a new method for mastitis detection.

  • PDF

Fast systemic evaluation of amylose and protein contents in collected rice landraces germplasm using near-infrared reflectance spectroscopy(NIRS)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Rauf, Muhammad;Chae, Byungsoo;Hyun, Do Yoon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.70-70
    • /
    • 2017
  • This study was conducted to characterize the amylose and protein contents of 4,948 rice landrace germplasm using the NIRS model developed in the previous study. The amylose contents estimated by NIRS in the standard rice were Sinseonchal (6.881%) 4.994%, Chucheong (19.731%) 18.633%, Goami (23.246%) 20.548%. Protein contents were Sinseonchal (6.890%) 6.824%, Chucheong (6.350%) 6.869%, Goami (6.777%) 7.839%. The NIRS analysis showed that 1.1-2.7%point lower in amylose and 0.4-0.6%point higher in protein than standard contents. The average amylose content of the germplasm was 20.39% with a range of 3.97-37.13%. The average protein content was 8.17% with a range of 5.20-17.45%. Amylose contents with a range of 20.06-27.02% represented 62.20% of the germplasm. Protein contents with a range of 6.78-9.75% represented 81.60% of the germplasm. Korean landrace comprised 24.9% among the 4,948 germplasm collected from 41 countries. A specific range of amylose contents showed in Korea 16.58-20.06%, in Japan 20.06-23.25%, in North Korea 23.25-27.02% and in China 27.02-37.13%. Protein contents exhibited 5.20-17.45% evenly in the whole landraces, whereas Chinese landrace particularly observed with 6.78-8.27% and 9.75-17.45%. Fifty resources were selected with low and high amylose ranging from 3.97-6.66% to 30.41-37.13% respectively. Similarly fifty resources were selected with low and high protein ranging from 5.20-6.09% to 13.21-17.45% respectively. Landraces with higher protein should be adapted to practical utilization of food sources.

  • PDF

Measurement of Surface Color and Fermentation Degree in Tea Products Using NIRS (근적외선 분광광도계를 이용한 차제품의 표면 색상 및 발효정도 측정)

  • Chun, Jong-Un
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • This study was conducted to measure tea surface colors using the visible bands ($400{\sim}700$ nm) with near-infrared spectroscopy (NIRS). The surface colors of 117 tea products were measured with a colorimeter. The $a^*/b^*$ (CIE color scale) or a/b (Hunter color scale) ratios in different tea products accounted for about 99.7% of the variation in fermentation degree (FD), indicating that the $a^*/b^*$ (a/b) ratio is a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRS. Calibration equations for surface colors and fermentation degree were developed using the regression method of modified partial least-squares (MPLS) with internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with $0.779{\sim}0.999$, indicating that the whole bands ($400{\sim}2500\;nm$) with NIRS could be used to rapidly measure traits related to surface color, fermentation degree and other chemical components in tea products with high precision and ease at a time.

Rapid Measure of Color and Catechins Contents in Processed Teas Using NIRS (근적외선 분광광도계를 이용한 차 제품의 색상 및 카테킨류의 신속 측정)

  • Chun, Jong-Un
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.386-392
    • /
    • 2010
  • This study was done to measure the color and catechins contents in processed teas using the whole bands (400~2500 nm) with near-infrared spectroscopy(NIRS). The powder colors of 109 processed teas were measured with a colorimeter. The a/b ratios in Hunter color scale in processed teas accounted for about 98.9% of the variation in the fermentation degree(FD), indicating that the a/b ratio was a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRSystem. The calibration equations for powder colors were developed using the regression method of modified partial least squares(MPLS) with the internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with 0.996~1.00, indicating that the visible bands(400~700 nm) with NIRS could be used to rapidly measure the variables related to powder color and fermentation degree. Also another powders of 137 processed teas were scanned at 780~2500 nm bands in the reflectance mode. The calibration equations were developed using the regression method of MPLS with the internal cross validation. The equations had low SECV, and high $R^2$ (0.896~0.983) values, showing that NIRS could be used to rapidly discriminate the contents of EGC($R^2$=0.919), EC(0.896), EGCg(0.978), ECg(0.905) and total catechins(0.983) in processed teas with high precision and ease.