• Title/Summary/Keyword: near-field optical

검색결과 381건 처리시간 0.028초

Local Variation of Magnetic Parameters of the Free Layer in TMR Junctions

  • Kim, Cheol-Gi;Shoyama, Toshihiro;Tsunoda, Masakiyo;Takahashil, Migaku;Lee, Tae-Hyo;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.72-79
    • /
    • 2002
  • Local M-H loops have been measured on the free layer of a tunneling magnetoresistance (TMR) junction using the magneto-optical Kerr effect (MOKE) system, with an optical beam size of about 2 $\mu$m diameter. Tunnel junctions were deposited using the DC magnetron sputtering method in a chamber with a base pressure of 3$\times$10$^{-9}$ Torr. The relatively irregular variations of coercive force H$_c$(∼17.5 Oe) and unidirectional anisotropy field H$_{ua}$(∼7.5 Oe) in the as-deposited sample are revealed. After $200{^{\circ}C}$ annealing, He decreases to 15 Oe but H$_{ua}$ increases to 20 Oe with smooth local variations. Two-dimensional plots of H$_c$ and H$_{ua}$ show the symmetric saddle shapes with their axes aligned with the pinned layer, irrespective of the annealing field angle. This is thought to be caused by geometric effects during deposition, together with a minor annealing effect. In addition, the variation of root mean square (RMS) surface roughness reveals it to be symmetric with respect to the center of the pinned-layer axis, with the roughness of 2.5 $\AA$ near the edge and 5.8 $\AA$ at the junction center. Comparison of surface roughness with the variation of H$_{ua}$ suggests that the H$_{ua}$ variation of the free layer is well described by dipole interactions related to surface roughness. As a whole, the reversal magnetization is not uniform over the entire junction area and the macroscopic properties are governed by the average sum of local distributions.

Conceptual Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Matsumoto, Toshio;Takeyama, Norihide;Enokuchi, Akito;Shin, Goo-Whan;Chae, Jangsoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.83-90
    • /
    • 2014
  • The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view ($2{\times}2$ deg) and a wide wavelength range from 0.95 to $3.8{\mu}m$ by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.

Environmental Dependence of Star-formation Properties of Galaxies at 0.5 < z < 2

  • Lee, Seong-Kook;Im, Myungshin;Kim, Jae-Woo
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.47.2-47.2
    • /
    • 2015
  • At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. In this presentation, we will show the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates at z~0.5-2. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < $10^{10}M_{\odot}$) since the star formation in most of high mass galaxies are already quenched at z > 1.

  • PDF

Subaru Strategy for 2020's

  • Arimoto, Nobuo
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.27.2-27.2
    • /
    • 2015
  • Strategic plan of Subaru science and operation will be introduced. Currently, Subaru has wide variety of instruments, conducts only classical observations, with less than 5 nights allocation for each proposal. Near future, Subaru will emphasize on surveys, introduce queue mode observations, reduce the number of instruments, and concentrate on large size programs. Large surveys are called Subaru Strategic Programs (SSPs). HSC-SSP is on-going (300 nights for 5 years), PFS-SSP will start at around 2020 (360 nights for 5 years), and IRD-SSP from 2016 (TBD). HSC science includes 1) cosmology with gravitational lensing, 2) lensing studies of galaxies and clusters, 3) photometric redshifts, 4) the Solar system, 5) the Milky Way and the Local Group, 6) AGN/quasars, 7) transients, 8) galaxies at low/high redshifts, and 9) clusters of galaxies. PFS science includes 1) cosmology, 2) galaxy & AGN, and 3) galactic archaeology. Subaru is planning the third pillar instrument, so called ULTIMATE-Subaru, which is the GLAO optical-NIR wide field camera & multi-IFU spectrograph for finding galaxies at ultra high redshift (z>10). Finally the strategy from Subaru to TMT will be presented. Subaru will conduct four major SSPs (HSC, PFS, IRD, ULTIMATE-Subaru) in coming decade to provide targets to TMT. HSC performs wide field surveys to reveal the distribution of dark matter in the Universe. IRD surveys Earth-like young planets to discover ~20 Earth-like habitable planets. PFS studies the expanding Universe to provide a few million emission line galaxies to TMT.

  • PDF

차세대 정보저장시스템 최신 기술 동향 (Technology Trend of Next Generation Information Storage Systems)

  • 박영필;임윤철;양현석;강신일;박노철;김영주
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-22
    • /
    • 2005
  • There are two important trends in the modern information society, including digital networking and ubiquitous environment. Thus it is strongly required to develop new information storage devices such as high density storages to match the increased data capacity and small size storage devices to be applied to the mobile multimedia electronics. So far, many approaches have been studied for the high density memory, including the holographic memory, super-RENS and near-field recording using solid immersion lens (SIL) or nano-probe for the ODD (Optical Disk Drive) system, and the perpendicular magnetic recording and heat-assisted magnetic recording for the HDD (Hard Disk Drive) system. In addition, new mobile storage devices have been prepared using 0.85" HDD and 30mm ODD systems from a lot of foreign and domestic companies and institutes. In this paper, the recent technology trend for the next generation information storage system is summarized to offer a research motivation and encouragement to new researchers in this field with an emphasis on the technical issues of the increase of data capacity and decrease of device size.

  • PDF

근적외 분광법을 응용한 휴대용 벌꿀 품질 평가 장치 개발 (Development of a Portable Quality Evaluation System for Bee-honeys by Using Near Infrared Spectroscopy)

  • 최창현;김종훈;권기현;김용주
    • 한국식품저장유통학회지
    • /
    • 제18권2호
    • /
    • pp.156-164
    • /
    • 2011
  • This study was conducted to develop a portable quality evaluation system of bee-honey by near infrared spectroscopic technique. Two kinds of bee-honeys from acacia and polyflower sources were tested in this study. The system consists of power supply, tungsten-halogen lamp, detector, and optical fiber probe. Performance of the system was analyzed by comparing the prediction accuracy of the laboratory spectrophotometer. Total of 346 spectra was divided into a calibration set and a prediction set. The PLS (Partial Least Squares) models were developed to predict the quality parameters of bee-honeys. Reflectance spectra, moisture contents, ash, invert sugar, sucrose, F/G ratio, HMF(hydroxy methyl furfural), and $C^{12}/C^{13}$ ratio of honeys were measured. The PLS models of the laboratory spectrophotometer showed good relationships between predicted and measured quality parameters of honeys in the wavelength range of 1.100~2.200 nm. The PLS analysis of the portable quality evaluation system showed good relationships between predicted and measured quality parameters of honeys in the wavelength range of 1.100~1.300 nm and 1.400~1.700 nm. The results showed the feasibility of the portable quality evaluation system to determine the quality parameters of bee-honey in the field during harvesting.

A study of the light trapping mechanism in periodically honeycomb texture-etched substrate for thin film silicon solar cells

  • Kim, Yongjun;Shin, Munghun;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.147.2-148
    • /
    • 2016
  • Light management technology is very important for thin film solar cells, which can reduce optical reflection from the surface of thin film solar cells or enhance optical path, increasing the absorption of the incident solar light. Using proper light trapping structures in hydrogenated amorphous silicon (a-Si:H) solar cells, the thickness of absorber layers can be reduced. Instead, the internal electric field in the absorber can be strengthened, which helps to collect photon generated carriers very effectively and to reduce light-induced loss under long-term light exposure. In this work, we introduced a chemical etching technology to make honey-comb textures on glass substrates and analyzed the optical properties for the textured surface such as transmission, reflection and scattering effects. Using ray optics and finite difference time domain method (FDTD) we represented the behaviors of light waves near the etched surfaces of the glass substrates and discussed to obtain haze parameters for the different honey-comb structures. The simulation results showed that high haze values were maintained up to the long wavelength range over 700 nm, and with the proper design of the honey-comb structure, reflection or transmission of the glass substrates can be enhanced, which will be very useful for the multi-junction (tandem or triple junction) thin film a-Si:H solar cells.

  • PDF

RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향 (Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering)

  • 손승익;이상운;손창식;황동현
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

Detector Mount Design for IGRINS

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyoung;Lee, Hanshin;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.177-186
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

SIMULATIONS OF TORUS REVERBERATION MAPPING EXPERIMENTS WITH SPHEREX

  • Kim, Minjin;Jeong, Woong-Seob;Yang, Yujin;Son, Jiwon;Ho, Luis C.;Woo, Jong-Hak;Im, Myungshin;Byun, Woowon
    • 천문학회지
    • /
    • 제54권2호
    • /
    • pp.37-47
    • /
    • 2021
  • Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of ≤ 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.