• Title/Summary/Keyword: near-IR

Search Result 354, Processing Time 0.024 seconds

EXPERIMENTAL AND AB INITIO CHARACTERIZATION OF THE ANHARMONICITY OF $v_s(OH)$ VIBRATION IN PHENOL DERIVATIVES

  • Boguslawa, Czarnik-Matusewicz;Rospenk, Maria;Koll, Aleksandern
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1274-1274
    • /
    • 2001
  • An anharmonicity is a fundamental quantity shaping the potential for stretching OH vibration in phenol and its derivatives. The phenomenon is examined both by experimental and theoretical methods. FT-IR and NIR spectra of series of phenols derivatives were measured in the range of fundamental and first two Overtones of $_{s}(OH)$ Vibrations in $CCl_4$ solutions. The electronic influence of substituents on the analyzed frequencies is discussed and correlated with $pK_{a}$ parameters. Ab initio MP2/6-31G(d,p) and B3LYP/6-31G(g,p) calculations of the potential for proton movement in OH group were performed. Equilibrium structures were also determined. The frequencies of fundamental and overtones were calculated by Numerov-type procedure. The results of calculations are compared with the experimental data. The best linear correlations were obtained for the results of MP2/6-31G(d,p) calculations. It was shown that some structural parameters are especially sensitive on substitution. The linear correlations were found between those parameters and spectroscopic data. The results of calculation are compared with available crystallographic data.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

Rheological Studies on the Aqueous Suspension of Korean Bentonite (국산벤토나이트 현탁액의 유동학적 성질)

  • Kim, Eun-Hee;Rhee, Gye-Ju
    • YAKHAK HOEJI
    • /
    • v.34 no.5
    • /
    • pp.302-310
    • /
    • 1990
  • A study has been made of the Korean bentonite aqueous suspension contrast with American bentonite by means of XRD IR swelling, gel formation and rheogram at various conditions such as concentration, temperature and pH. The Korean bentonite was identified as montmorillonite clay containig a small proprotion of crystoballite and mordenite, and its swelling power were acceptable for requirements of Korean pharmacopeia regulations though its values were not satisfied. Korean bentonite swelled to 10 times and American one did to 15 times compared to its bulkiness of powder. The rheogram of Korean bentonite suspension reveals bulged pseudoplatic flow with yield value at higher concentration and pseudoplastic flow without yield value at lower concentration. The higher the concentration, the greater were the apparent viscosity and hysteresis loop. Korean bentonite suspension showed insignificant temperature dependence on both apparent viscosity and hysteresis loop and it was more temperature dependent on viscosity but less on hysteresis loop than those of American sample. The pH dependence was so high on viscosity that apparent minimum value was near pH 7 and maximum value at pH 3 or 7. The hysteresis loop appeared minimum over the pH range 5-7 and maximum near pH 3 or 11. The Korean bentonite was inferior to the American bentonite in swelling volume, gel formation, thioxotropy, however, it would be possible to improve the quality of Korean bentonite by developing the method of purification for bentonite clay.

  • PDF

NEAR-IR POLARIMETRY AROUND 30 DORADUS: I. SEPARATION OF THE GALACTIC SOURCES

  • Kim, Jae-Yeong;Pak, Soo-Jong;Choi, Min-Ho;Kang, Won-Seok;Kandori, Ryo;Tamura, Motohide;Nagata, Tetsuya;Kwon, Jung-Mi;Kato, Daisuke;Jaffe, Daniel T.
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.135-142
    • /
    • 2011
  • A $200'{\times}200'$ region around 30 Doradus in the Large Magellanic Cloud (LMC) is observed and analyzed in the near-infrared. We obtain polarimetry data in the J, H, and Ks bands using the SIRIUS polarimeter SIRPOL at the Infrared Survey Facility 1.4 m telescope. We measure the Stokes parameters of 2562 point-like sources to derive the degree of polarization and the polarization position angles. We discuss the statistics of the groups classified by color-magnitude diagram and proper motions of the sources, in order to separate the Galactic foreground sources from those present in the LMC. We notice that groups classified by the proper motion data show a tendency towards different polarimetric properties.

AC Breakdown Strength According to Crystallinity and Diffusion of Crosslink By-products by Annealing of XLPE (XLPE의 열처리에 의한 결정화도, 가교부산물의 확산에 따른 교류파괴전압 특성)

  • Kim, Young-Ho;Lee, Sang-Jin;Lee, Seung-Yop;Choi, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1608-1610
    • /
    • 2000
  • In this work, the effect of annealing on physical and electrical properties of XLPE cable insulation was investigated. One sample was non-annealed and the other two samples were treated under air circulated oven at 80$^{\circ}C$ for five and ten days. In the DSC patterns of annealed specimen, new peaks appeared at near 80$^{\circ}C$ as a proof of thermal history. The degree of crystallinity increased by annealing effect. In the FT-IR spectrums, the change of absorbances to acetophenone and cumyl alcohol were observated according to the radial direction of cable insulation. They slowly diffused into both semi-conductive layer of the cable in proportion to annealing time and lastly led to near equilibrium state through cable insulation. The AC breakdown strength did not increased but the values were stabilized by effects of crystallinity and diffusion of by-products.

  • PDF

Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method (Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘)

  • Lim, Yun-Won;Jeong, Jin-Su;An, Jin-Ung;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

Characteristics of Brightness Temperature of Geostationary Satellite on Lightning Events during Summer over South Korea (여름철 낙뢰 발생 시 정지궤도 위성의 휘도온도 특성)

  • Lee, Yun-Jeong;Suh, Myoung-Seok;Eom, Hyo-Sik;Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.744-758
    • /
    • 2009
  • The characteristics of brightness temperature (BT) of infrared and water vapor channels from MTSAT-1R have been investigated using 12 persistent and frequent lightning cases selected from the summer lightnings of 2006-2008. The infrared (IR1, 10.3-11.3 ${\mu}M$) and water vapor (WV, 6.5-7.0 ${\mu}M$) channels from the MTSAT-1R and the lightning observation data from Korea Meteorological Administration are used. When there is no lightning, the BTs of the IR1 and WV channels show the largest frequency at around 290-295K and 245K, respectively. On the other hand, the BTs of two channels show the largest frequency at 215K caused by strong convection when there is lightning. As a result, the WV-IR1 difference (BTDWI) sharply increases from -50K to 0K. Although it depends on the evolution stage of thunderstorms, the lightning mainly occurs at the core of circular convection in the mesoscale convective complex (MCC), whereas the lightning occurs by concentrated line-shape in the squall line. A strong positive correlation exists between the lightning frequency and the BT in the MCC regardless of the BT, but only at the very cold BT in the squall line. In general, the characteristics of BT are well defined for the lightning occurring in the concentrated line, but they are not well defined in the MCC, especially during the decaying stage of MCC. When they are defined well, the lightning occurs when the BTs of IR1 and WV are lower than 215K, BTDWI is near -3 to 1K, and local standard deviation of IR1 decreases to around 1K.

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm

  • Oh, Myoung-Kyu;Lee, Yong-Hoon;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 ${\mu}m$ using an external cavity diode laser. The absorption lines of methane between 6002.48 $cm^{-1}$ and 6003.37 $cm^{-1}$ and ethane between 5955.65 $cm^{-1}$ and 5956.4 $cm^{-1}$ have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5$\times10^{-20}cm^2$ and 7.4$\times10^{-21}cm^2$ for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8${\times}10^{-9}cm^{-1}$/$\sqrt{Hz}$, which corresponds to the detection limits of 3 ppb/$\sqrt{Hz}$ and 27 ppb/$\sqrt{Hz}$ for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.

The solar photospheric and chromospheric magnetic field as observed in the near-infrared

  • Collados, Manuel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.4-32
    • /
    • 2016
  • Observing the solar atmosphere with ground-based telescopes in the near-infrared has a number of advantages when compared to classical measurements in visible wavelengths. One of them comes from the magnetic sensitivity of spectral lines, which varies as ${\lambda}_g$, where g is the effective $Land{\acute{e}}$ factor of the transition. This wavelength dependence makes the near-infrared range adequate to study subtle spatial or temporal variations of the magnetic field. Spectral lines, such as the photospheric Fe I $1.5648{\mu}m$ spectral line, with a $Land{\acute{e}}$ factor g=3, have often been used in the past for this type of studies. To study the chromosphere, the Ca II IR triplet and the He I $1.0830{\mu}m$ triplet are the most often observed lines. The latter has the additional advantage that the photospheric Si I $1.0827{\mu}m$ is close enough so that photosphere and chromosphere can be simultaneously recorded with a single detector in a spectrograph. The instrument TIP (Tenerife Infrared Polarimeter) has been continuously operating since 1999 at the 70-cm German VTT of the Observatorio del Teide and has been recently moved to the 1.5-m German GREGOR. During all this time, results have been obtained concerning the nature of the weak photospheric magnetic field of the quiet sun, magneto-acoustic wave propagation, evolution with the cycle of sunspot magnetic fields, photospheric and chromospheric magnetic field in emerging regions, magnetic field in chromospheric structures such as filaments, prominences, flares, and spicules, etc. In this talk, I will review the main results obtained after all these observations and mention the main challenges for the future. With its novel polarization-free design and a complete suite of instruments aimed at simultaneous (imaging and spectroscopic) observations of the solar photosphere and chromosphere, the EST (European Solar Telescope) will represent a major world-wide infrastructure to understand the physical nature of all these phenomena.

  • PDF