• Title/Summary/Keyword: near source earthquakes

Search Result 18, Processing Time 0.022 seconds

Effects of strong ground motions of near source earthquakes on response of thin-walled L-shaped steel bridge piers

  • Xie, Guanmo;Taniguchi, Takeo;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.341-346
    • /
    • 2001
  • Near source earthquakes can be characterized not only by strong horizontal but also by strong vertical ground motions with broad range of dominant frequencies. The inelastic horizontal response of thin-walled L-shaped steel bridge piers, which are popularly used as highway bridge supports, subjected to simultaneous horizontal and vertical ground excitations of near source earthquakes is investigated. A comprehensive damage index and an evolutionary-degrading hysteretic model are applied. Numerical analysis reveals that the strong vertical excitation of a near source earthquake exerts considerable influences on the damage development and horizontal response of thin-walled L-shaped steel bridge piers.

Necessity and adequacy of near-source factors for seismically isolated buildings

  • Saifullah, Muhammad Khalid;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.91-108
    • /
    • 2017
  • Superstructures and isolation systems of seismically isolated buildings located close to active faults may observe increased seismic demands resulting from long-period and high-amplitude velocity and displacement pulses existent in near-fault ground motions as their fundamental periods may be close to or coincident with these near-fault pulse periods. In order to take these effects into account, the 1997 Uniform Building Code (UBC97) has specified near-source factors that scale up the design spectrum depending on the closest distance to the fault, the soil type at the site, and the properties of the seismic source. Although UBC97 has been superseded by the 2015 International Building Code in the U.S.A., UBC97 near-source factors are still frequently referred in the design of seismically isolated buildings around the world. Therefore it is deemed necessary and thus set as the aim of this study to assess the necessity and the adequacy of near-source factors for seismically isolated buildings. Benchmark buildings of different heights with isolation systems of different properties are used in comparing seismic responses obtained via time history analyses using a large number of historical earthquakes with those obtained from spectral analyses using the amplified spectrums established through UBC97 near-source factors. Results show that near-source factors are necessary but inadequate for superstructure responses and somewhat unconservative for base displacement response.

Practical coherency model suitable for near- and far-field earthquakes based on the effect of source-to-site distance on spatial variations in ground motions

  • Yu, Rui-Fang;Abduwaris, Abduwahit;Yu, Yan-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.651-666
    • /
    • 2020
  • In this study, the spatial variation mechanisms of large far-field earthquakes at engineering scales are first investigated with data from the 2008 Ms 8.0 Wenchuan earthquake. And a novel 'coherency cut-off frequency' is proposed to distinguish the spatial variations in ground motions in the low-frequency and high-frequency ranges. Then, a practical piecewise coherency model is developed to estimate and characterize the spatial variation in earthquake ground motions, including the effects of source-to-site distances, site conditions and neighboring topography on these variations. Four particular earthquake records from dense seismograph arrays are used to investigate values of the coherency cut-off frequency for different source-to-site distances. On the basis of this analysis, the model is established to simulate the spatial variations, whose parameters are suitable for both near- and far-field earthquake conditions. Simulations are conducted to validate the proposed model and method. The results show that compared to the existing models, the proposed model provides an effective method for simulating the spatial correlations of ground motions at local sites with known source-to-site distances.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

A Study on Estimating Earthquake Magnitudes Based on the Observed S-Wave Seismograms at the Near-Source Region (근거리 지진관측자료의 S파를 이용한 지진규모 평가 연구)

  • Yun, Kwan-Hee;Choi, Shin-Kyu;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.121-128
    • /
    • 2024
  • There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune's source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.

Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations (추계학적 지진동 모사에서 유한단층 모델의 민감도 분석)

  • Lee, Sang-Hyun;Rhie, Junkee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.

Infrasound Wave Propagation Characteristics in Korea (국내 인프라사운드 전파특성 연구)

  • 제일영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

Extending the OPRCB Seismic isolation system's governing equations of motion to 3D state and its application in multi-story buildings

  • M. Hosseini;S. Azhari;R. Shafie Panah
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.217-235
    • /
    • 2023
  • Orthogonal pairs of rollers on concave beds (OPRCB) are a low-cost, low-tech rolling-based isolating system, whose high efficiency has been shown in a previous study. However, seismic performance of OPRCB isolators has only been studied in the two-dimensional (2D) state so far. This is while their performance in the three-dimensional (3D) state differs from that of the 2D state, mainly since the vertical accelerations due to rollers' motion in their beds, simultaneously in two orthogonal horizontal directions, are added up and resulting in bigger vertical inertia forces and higher rolling resistance. In this study, first, Lagrange equations were used to derive the governing equations of motion of the OPRCB-isolated buildings in 3D. Then, some regular shear-type OPRCB-isolated buildings were considered subjected to three-component excitations of far- and near-source earthquakes, and their responses were compared to those of their fixed-base counterparts. Finally, the effects of more realistic modeling and analysis were examined by comparing the responses of isolated buildings in 2D and 3D states. Response histories were obtained by the fourth-order Runge-Kutta-Nystrom method, considering the geometrical nonlinearity of isolators. Results reveal that utilizing the OPRCB isolators effectively reduces the acceleration response, however, depending on the system specifications and earthquake characteristics, the maximum responses of isolated buildings in the 3D state can be up to 40% higher than those in the 2D state.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.