• Title/Summary/Keyword: near school

Search Result 2,790, Processing Time 0.035 seconds

PROPERTIES OF DUST IN VARIOUS ENVIRONMENTS OF NEARBY GALAXIES

  • Kaneda, Hidehiro;Kokusho, Takuma;Yamada, Rika;Ishihara, Daisuke;Oyabu, Shinki;Kondo, Toru;Yamagishi, Mitsuyoshi;Yasuda, Akiko;Onaka, Takashi;Suzuki, Toyoaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.135-139
    • /
    • 2017
  • We have performed systematic studies of the properties of dust in various environments of nearby galaxies with AKARI. The unique capabilities of AKARI, such as near-infrared (near-IR) spectroscopy combined with all-sky coverage in the mid- and far-IR, enable us to study processing of dust, particularly carbonaceous grains includings polycyclic aromatic hydrocarbons (PAHs), for unbiased samples of nearby galaxies. In this paper, we first review our recent results on individual galaxies, highlighting the uniqueness of AKARI data for studies of nearby galaxies. Then we present results of our systematic studies on nearby starburst and early-type galaxies. From the former study based on the near-IR spectroscopy and mid-IR all-sky survey data, we find that the properties of PAHs change systematically from IR galaxies to ultraluminous IR galaxies, depending on the IR luminosity of a galaxy or galaxy population. From the latter study based on the mid- and far-IR all-sky survey data, we find that there is a global correlation between the amounts of dust and old stars in early-type galaxies, giving an observational constraint on the origin of the dust.

Real-Time Fluorescence Imaging in Thoracic Surgery

  • Das, Priyanka;Santos, Sheena;Park, G. Kate;I, Hoseok;Choi, Hak Soo
    • Journal of Chest Surgery
    • /
    • v.52 no.4
    • /
    • pp.205-220
    • /
    • 2019
  • Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.

NEAR-INFRARED WIDE-FIELD IMAGING CAMERA WITH PtSi 1040 $\times$ 1040 CSD

  • ITOH NOBUNARI;YANAGISAWA KENSHI;ICHIKAWA TAKASHI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.379-380
    • /
    • 1996
  • We have constructed a near-infrared imaging camera which is attached to the prime focus of 105cm Schmidt telescope at Kiso Observatory. The camera is equipped with a 1040$\times$1040 PtSi CSD array developed by Mitsubishi Electric Co. The combination of Kiso Schmidt and the array gives a wide field of view of 18.4'$\times$18.4' with a reasonable spatial resolution of 1.06' /pixel. The system performances of the camera have been evaluated through laboratory and observational tests. Low noise, good cosmetics(no defect pixels), and good stability of the camera system show an excellent performance for astronomical use.

  • PDF

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

Implemented of non-destructive intelligent fruit Brix(sugar content) automatic measurement system (비파괴 지능형 과일 당도 자동 측정 시스템 구현)

  • Lee, Duk-Kyu;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.433-439
    • /
    • 2020
  • Recently, the need for IoT-based intelligent systems is increasing in various fields. In this study, we implemented the system that automatically measures the sugar content of fruits without damage to fruit's marketability using near-infrared radiation and machine learning. The spectrums were measured several times by passing a broadband near-infrared light through a fruit, and the average value for them was used as the input raw data of the machine-learned DNN(Deep Neural Network). Using this system, he sugar content value of fruits could be predicted within 5 s, and the prediction accuracy was about 93.86%. The proposed non-destructive sugar content measurement system can predict a relatively accurate sugar content value within a short period of time, so it is considered to have sufficient potential for practical use.

Top-Heavy Initial Mass Function of Star Clusters near the Galactic Centre

  • Park, So-Myoung;Goodwin, Simon P.;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2018
  • Star clusters are important in understanding star formation. In star-forming regions, the number of stars with mass forms with an initial mass function (IMF), i.e. Chabrier, Salpeter, Kroupa, etc. In our simulations, initially sub-virial fractal star clusters evolve to become surviving sub-regions in strong tidal fields. We investigate the slope of the mass function (MF) of these sub-regions with time near the Galactic centre (GC). These sub-regions would appear to have a top-heavy IMF at ~ 2 Myr. Therefore, although our star-forming region near the GC has a normal IMF, stars in surviving 'clusters' can have a top-heavy 'IMF' due to the violent environment.

  • PDF

Clinical Applications of Functional Near-Infrared Spectroscopy in Children and Adolescents with Psychiatric Disorders

  • Lee, Yeon Jung;Kim, Minjae;Kim, Ji-Sun;Lee, Yun Sung;Shin, Jeong Eun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • The purpose of this review is to examine the clinical use of functional near-infrared spectroscopy (fNIRS) in children and adolescents with psychiatric disorders. Many studies have been conducted using objective evaluation tools for psychiatric evaluation, such as predicting psychiatric symptoms and treatment responses. Compared to other tools, fNIRS has the advantage of being a noninvasive, inexpensive, and portable method and can be used with patients in the awake state. This study mainly focused on its use in patients with attention-deficit/hyperactivity disorder and autism spectrum disorder. We hope that research involving fNIRS will be actively conducted in various diseases in the future.

A hybrid deep learning model for predicting the residual displacement spectra under near-fault ground motions

  • Mingkang Wei;Chenghao Song;Xiaobin Hu
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.

Design of the Pseudolite Pulsing Scheme

  • Chang, Jae-Won;Cho, Deuk-Jae;Park, Chan-Sik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.215-218
    • /
    • 2004
  • The pseudolites are ground-based transmitters that can be configured to emit GPS-like signals with the purpose of enhancing the GPS by providing increased accuracy, integrity, and availability. Although the use of the pseudolites offers many potentially significant benefits, a number of technical issues must also be addressed. One is the pseudolite signal power level which is related with near-far problem, and other issues include deployment requirements, signal data rate, signal integrity monitoring, and user antenna location and sensitivity. In order to solve the near-far problem, the frequency offset or the pulsing schemes is implemented in most the pseudolites. However, in the case of the previous pulsing scheme with the fixed code pattern, the near-far problem still remains. This paper aims to design a sequential pulsing scheme to avoid the near-far problem. A pulse mode pseudolite has less interference than the continuous mode.

  • PDF

Near-Infrared Laser Stimulation of the Auditory Nerve in Guinea Pigs

  • Guan, Tian;Wang, Jian;Yang, Muqun;Zhu, Kai;Wang, Yong;Nie, Guohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.269-275
    • /
    • 2016
  • This study has investigated the feasibility of 980-nm low-energy pulsed near-infrared laser stimulation to evoke auditory responses, as well as the effects of radiant exposure and pulse duration on auditory responses. In the experiments, a hole was drilled in the basal turn of the cochlea in guinea pigs. An optical fiber with a 980-nm pulsed infrared laser was inserted into the hole, orientating the spiral ganglion cells in the cochlea. To model deafness, the tympanic membrane was mechanically damaged. Acoustically evoked compound action potentials (ACAPs) were recorded before and after deafness, and optically evoked compound action potentials (OCAPs) were recorded after deafness. Similar spatial selectivity between optical and acoustical stimulation was found. In addition, OCAP amplitudes increased with radiant exposure, indicating a photothermal mechanism induced by optical stimulation. Furthermore, at a fixed radiant exposure, OCAP amplitudes decreased as pulse duration increased, suggesting that optical stimulation might be governed by the time duration over which the energy is delivered. Thus, the current experiments have demonstrated that a 980-nm pulsed near-infrared laser with low energy can evoke auditory neural responses similar to those evoked by acoustical stimulation. This approach could be used to develop optical cochlear implants.