• 제목/요약/키워드: near net shape

검색결과 122건 처리시간 0.028초

비조질강 온간단조를 위한 공정검토 (Study of Warm Forging Process for Non-Heat-Treated Steel)

  • 박종수;강정대;이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

점토질소지의 공정제어에 따른 저수축 치밀화효과 (Effect of Processing Parameters on the Densification-Behaviors by Low Shrinkage in Clay Materials)

  • 임희진;최성철;이응상;이진성
    • 한국세라믹학회지
    • /
    • 제33권7호
    • /
    • pp.725-734
    • /
    • 1996
  • 점토질 소지에 있어서 수축 특성은 성형, 건조 및 소성 공정에 수반되어 치말화거등에 기여할 수 있는 구동력이 될 수 있다. 점토질 소지에서 저수축 치말화거동은 입자크기효과와 상전이 특성에 기인하는 열간 반응전이 거동을 포함하는 공정변수에 따라 크게 변화됨을 보였다. 90$0^{\circ}C$ 및 120$0^{\circ}C$에서 열처리된 Chamotte의 첨가를 통해서 점토질 소지의 열간 치밀화 과정에 기인하는 공정수축은 크게 억제될 수 있었다. 120$0^{\circ}C$에서 열처리된 조대한 Chamotte 입자는 점토 소지의 치밀화 거동을 억제하여 치밀한 소결미세구조를 얻을 수는 없었지만, 조대한 Chamotte 입자의 첨가는 neat-net-shape 제어를 촉진할 수 있었다. 점토질 소지에 있어서 미세구조/물성간의 연관관계는 저수축과 치밀화 거동사이의 상반된 특성을 제어함으로써 얻어진 최적조건에 따라 직접적인 영향을 받을 것으로 판단되었다.

  • PDF

반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향 (The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material)

  • 최재찬;박형진;이병목
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

반용융 단조에서 가압유지 시간에 의한 미세조직의 특성 (Microstructural Characteristics by Compression Holding Time in Semi-Solid Forging)

  • 최재찬;박형진;이병목
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.174-182
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net-shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression -holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect microstructural characteristics and shape of products is important to make decision, where it is necessary to find overall heat transfer coefficient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of obtaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression holding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression holding time on microstructural characteristics of products is finally investigated by experiment.

  • PDF

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

전자교반을 응용한 알루미늄 레오로지 소재의 간접단조공정 (Indirect Forging Process with Aluminum Rheology Material by Electromagnetic Stirring System)

  • 오세웅;강성식;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2007
  • A semi-solid forming processing has been developed for manufacturing near net-shape components. The semi-solid forming has two methods. One is thixo-forming with reheating prepared billet, the other is rheo- forming with cooled melt until semi-solid state. In indirect forging processing, this experiment used aluminum rheology materials by electromagnetic stirring system. Rheology material is made by A16061. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. Forged samples are found microstructures and mechanical properties. Forged samples are accomplished heat treatment T6 for high mechanical properties.

  • PDF

Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동 (Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route)

  • 임주현;백경호
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

반용융 압연을 이용한 박판제조공정에 관한 연구( I ) (A Study on Strip Fabrication Processes Using Mushy State Rolling(I))

  • 백남주;강충길;김영도
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.584-595
    • /
    • 1991
  • In the direct rolling processes for the mushy state alloy, a mushy state material which simultaneously contains liquid-solid phase is obtained from the exit port of stirring apparatus with a given solid fraction. This solid fraction is dependent on the temperature of within the solid-liquid range which shows to be controlled accurately by the experimental conditions for a given stirring apparatus. Rolling conditions for fabrication the fine surface strip were obtained from direct rolling experiment with mushy state alloys of Sn-75%Pb and aluminum alloy. Influence of solid fraction, rolling speed and initial roller gap on the state of strip surface and solidified structure was observed. We proposed theoretical model for prediction of rolling force, and we compared calculation result and experimental value measured with load cell.

틱소몰딩 공정을 이용한 AZ91D Mg합금의 기계적 성질 증대 (Improvement in Mechanical Properties of AZ91D Mg-Alloy through Thixomolding Process)

  • 신동수;정성종
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.593-600
    • /
    • 2012
  • Thixomolding of Mg-alloy is a semi-solid injection molding process utilizing thixotropic phenomenon. Using this process, higher strength, thinner wall section and tighter tolerance without porosity are obtained. It has been applied for production of near-net-shape magnesium component. To design optimal thixomolding process of Mg-alloy part, molding conditions such as slurry temperature, mold temperature and injection time should be determined properly. Selection of these parameters has been dependent upon engineers' experience and intuitiveness. In this paper, to improve mechanical properties of the thixomolded product, optimal selection of process variables such as injection velocity, barrel temperature and die temperature in the process has been studied through microstructural analysis and Taguchi method. Performance of the process is verified through experiments.

사출성형의 보압과정에 관한 연구

  • 이호상;전형환;한진현;설권;한창훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.46-50
    • /
    • 2001
  • Due to its ability in producing a net-shape product to high precision in a very shot cycle time, injection molding has become one of the most important polymer-processings in the industry today. Recently the CAE applications in the field of injection molding have provided significant contributions to the mold design and process optimization. As a part of such an application the packing process has been studied using C-PARK. The prediction of pressure variations during post-filling stage for amorphous material has been compared with an experimental observation for a simple rectangular geometry of uniform thickness. And the optimal packing processes were calculated using the cavity pressure curve near the gate. As a case study, a warpage simulation was carried out for a DY-HOLDER with the variable number of gates.