• Title/Summary/Keyword: navigation signal

Search Result 1,046, Processing Time 0.027 seconds

Development of MATLAB-based Signal Performance Analysis Software for New RNSS Signal Design

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.139-152
    • /
    • 2019
  • The design of new navigation signals is a key factor in building new satellite navigation systems and/or modernizing existing legacy systems. Navigation signal design involves selecting candidate groups and evaluating and analyzing their signal performances. This process can be easily performed through software simulation especially at the beginning of the development phase. The analytical signal performance analysis software introduced in this study is implemented based on equations between the signal design parameters of Radio Navigation Satellite Service (RNSS) and the navigation signal figures-of-merit (FoMs). Therefore, this study briefly summarizes the RNSS signal design parameters and FoMs before introducing the developed software. After that, we explain the operating sequence of the implemented software including the Graphical User Interface (GUI), and calculate the FoMs of an example scenario to verify the feasibility of the software operations.

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

Design of a Fully Reconfigurable Multi-Constellation and Multi-Frequency GNSS Signal Generator

  • ByungHyun Choi;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.295-306
    • /
    • 2023
  • This paper presents a multi-frequency and multi-constellation Global Navigation Satellite System (GNSS) signal generator that simulates intermediate frequency level digital signal samples for testing GNSS receivers. GNSS signal generators are ideally suited for testing the performance of GNSS receivers and algorithms under development in the laboratory for specific user locations and environments. The proposed GNSS signal generator features a fully-reconfigurable structure with the ability to adjust signal parameters, which is beneficial to generate desired signal characteristics for multiple scenarios including multi-constellation and frequencies. Successful signal acquisition, tracking, and navigation are demonstrated on a verified Software Defined Radio (SDR) in this study. This work has implications for future studies and advances the research and development of new GNSS signals.

Design and Analysis of the Long Period Navigation Signal Search Algorithm Using Acquisition Code (신호획득 코드를 이용한 장주기 항법신호 획득 기법 설계 및 분석)

  • Kihoon Lee;Jang Yong Lee;Jang Hwan Shin;Jae Min Ahn;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.4
    • /
    • pp.425-430
    • /
    • 2024
  • The public regulated restriction signals are encrypted generally with the very long period code in Global Navigation Satellite System (GNSS) including Global positioning system (GPS). Unlike civilian navigation signals, the long period code is used for the security enhancement purpose. The navigation signals with the long period code are very difficult to acquire due to their own non-periodic characteristics. The application of Acquisition Code (AC) is required for the proper working of the long period navigation signals. In this paper, we present the design and analysis results of the navigation signal with acquisition code. Specifically, the acquisition performance and Time To First Acquisition (TTFA) are presented analytically. In the process of the navigation signal design, we include AC length, insertion pattern, code rate, and filter effects. Also, the navigation signal receiving process include the effects of Side Band Filter (SBF), doppler frequency and code phase errors. The indicators that used to evaluate navigation signal acquisition performance are the detectability and TTFA.

Region Defense Technique Using Multiple Satellite Navigation Spoofing Signals

  • Lee, Chi-Hun;Choi, Seungho;Lee, Young-Joong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2022
  • The satellite navigation deception technology disturbs the navigation solution of the receiver by generating a deceptive signal simulating the actual satellite for the satellite navigation receiver mounted on the unmanned aerial vehicle, which is the target of deception. A single spoofing technique that creates a single deceptive position and velocity can be divided into a synchronized spoofing signal that matches the code delay, Doppler frequency, and navigation message with the real satellite and an unsynchronized spoofing signal that does not match. In order to generate a signal synchronized with a satellite signal, a very sophisticated and high precision signal generation technology is required. In addition, the current position and speed of the UAV equipped with the receiver must be accurately detected in real time. Considering the detection accuracy of the current radar technology that detects small UAVs, it is difficult to detect UAVs with an accuracy of less than one chip. In this paper, we assume the asynchrony of a single spoofing signal and propose a region defense technique using multiple spoofing signals.

Design of GPS L1 C/A Spoofing Signal Detection Algorithm (GPS L1 C/A 기만 신호 검출 기법 설계)

  • Lim, Soon;Lim, Deok-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • In this paper, an effect on a GPS receiver by spoofing signal is analyzed and a GPS spoofing signal detection algorithm for GPS L1 C/A spoofing signal is proposed. A proposed detection algorithm monitors the correlation function distortion by the spoofing signal. If detected distortion is over a detection threshold, we can determine that the spoofing signal is received. The detection threshold is calculated from the statistical characteristics of a thermal noise. For verifying the suggested algorithm, a MATLAB-based simulation platform is implemented. This platform has functionalities to track GPS signal and measure the correlation values. By using this platform, the correlation function distortion by spoofing signal is observed. Also a performance of the algorithm proposed in this paper is applied and confirm the detection of a spoofing signal.

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

Survey of Signal Design for Global Navigation Satellite Systems (GNSS 신호 설계 동향조사)

  • Jong Hyun Jeon;Jeonghang Lee;Jeongwan Kang;Sunwoo Kim;Jung-Min Joo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

GNSS Signal Design Trade-off Between Data Bit Duration and Spreading Code Period for High Sensitivity in Signal Detection

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.87-94
    • /
    • 2017
  • GNSS modernization and development is in progress throughout the globe, and it is focused on the addition of a new navigation signal. Accordingly, for the next-generation GNSS signals that have been developed or are under development, various combinations that are different from the existing GNSS signal structures can be introduced. In this regard, to design an advanced signal, it is essential to clearly understand the effects of the signal structure and design variables. In the present study, the effects of the GNSS spreading code period and GNSS data bit duration (i.e., signal design variables) on the signal processing performance were analyzed when the data bit transition was considered, based on selected GNSS signal design scenarios. In addition, a method of utilizing the obtained result for the design of a new GNSS signal was investigated.