• Title/Summary/Keyword: navigation logic

Search Result 153, Processing Time 0.031 seconds

Low Complexity Channel Preprocessor for Multiple Antenna Communication Systems (다중 안테나 통신 시스템을 위한 저복잡도 채널 전처리 프로세서)

  • Hwang, You-Sun;Jang, Soo-Hyun;Han, Chul-Hee;Choi, Sung-Nam;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.213-220
    • /
    • 2011
  • In this paper, the channel preprocessor with an area-efficient architecture is proposed for the MIMO symbol detector which can support four transmit and receive antennas. The proposed channel preprocessor can shrink the channel dimension to reduce the hardware complexity of the MIMO symbol detector. Also, the proposed channel preprocessor is implemented with very low complexity by using QR decomposition (QRD) and log-number system (LNS). By applying QRD and LNS to the nulling matrix calculation block, the numbers of matrix-multiplications and matrix-divisions are decreased and thus the complexity of the proposed channel preprocessor is significantly reduced. The proposed channel preprocessor was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.13um CMOS standard cell library. With the proposed channel preprocessor, the number of logic gates for channel preprocessor is reduced by 20.2% compared with the conventional architecture.

Design and Implementation of CW Radar-based Human Activity Recognition System (CW 레이다 기반 사람 행동 인식 시스템 설계 및 구현)

  • Nam, Jeonghee;Kang, Chaeyoung;Kook, Jeongyeon;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.426-432
    • /
    • 2021
  • Continuous wave (CW) Doppler radar has the advantage of being able to solve the privacy problem unlike camera and obtains signals in a non-contact manner. Therefore, this paper proposes a human activity recognition (HAR) system using CW Doppler radar, and presents the hardware design and implementation results for acceleration. CW Doppler radar measures signals for continuous operation of human. In order to obtain a single motion spectrogram from continuous signals, an algorithm for counting the number of movements is proposed. In addition, in order to minimize the computational complexity and memory usage, binarized neural network (BNN) was used to classify human motions, and the accuracy of 94% was shown. To accelerate the complex operations of BNN, the FPGA-based BNN accelerator was designed and implemented. The proposed HAR system was implemented using 7,673 logics, 12,105 registers, 10,211 combinational ALUTs, and 18.7 Kb of block memory. As a result of performance evaluation, the operation speed was improved by 99.97% compared to the software implementation.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

Pattern Recognition of Ship Navigational Data Using Support Vector Machine

  • Kim, Joo-Sung;Jeong, Jung Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2015
  • A ship's sailing route or plan is determined by the master as the decision maker of the vessel, and depends on the characteristics of the navigational environment and the conditions of the ship. The trajectory, which appears as a result of the ship's navigation, is monitored and stored by a Vessel Traffic Service center, and is used for an analysis of the ship's navigational pattern and risk assessment within a particular area. However, such an analysis is performed in the same manner, despite the different navigational environments between coastal areas and the harbor limits. The navigational environment within the harbor limits changes rapidly owing to construction of the port facilities, dredging operations, and so on. In this study, a support vector machine was used for processing and modeling the trajectory data. A K-fold cross-validation and a grid search were used for selecting the optimal parameters. A complicated traffic route similar to the circumstances of the harbor limits was constructed for a validation of the model. A group of vessels was composed, each vessel of which was given various speed and course changes along a specified route. As a result of the machine learning, the optimal route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling method, we intend to support the decision-making of Vessel Traffic Service operators in terms of navigational patterns and their characteristics.

Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy (퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어)

  • Lee, Won-Ho;Lee, Hyung-Woo;Kim, Sang-Heon;Jung, Jae-Young;Roh, Tae-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2004
  • The major interest of general mobile robot is making a route and following a maked route. But, In the case of robot that is in need of movement of partial high speed, the condition of dynamic limitation is exist, and in these conditions, it demands controlling against movements we want. In this paper, in respect of the following a route at the situation that don't have the environmental map, that is, unknown environments, to prevent the slide of moving robot or the overturn that can happen for it moves fast, we organize the dynamic condition of limitation using the fuzzy logic, and we obtain more safe and fast route tracing ability by changing the standard velocity. Especially, by modeling the line tracing mobile robot, we design the tracing controller against a realtime changing target, and using the fuzzy optimized velocity limitation controller, we confirm that our robot shows its stable tracing ability by limiting its velocity intelligently against the continuously changing line.

Development of Force Feedback Joystick for Remote Control of a Mobile Robot (이동로봇의 원격제어를 위한 힘 반향 조이스틱의 개발)

  • Suh, Se-Wook;Yoo, Bong-Soo;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The main goal of existing mobile robot system was a complete autonomous navigation and the vision information was just used as an assistant way such as monitoring For this reason, the researches have been going towards sophistication of autonomousness gradually and the production costs also has been risen. However, it is also important to control remotely an inexpensive mobile robot system which has no intelligence at all. Such systems may be much more effective than fully autonomous systems in practice. Visual information from a simple camera and distance information from ultrasonic sensors are used for this system. Collision avoidance becomes the most important problem for this system. In this paper, we developed a force feedback joystick to control the robot system remotely with collision avoiding capability. Fuzzy logic is used for the algorithm in order to implement the expert s knowledge intelligently. Some experimental results show the force feedback joystick werks very well.

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.

Development of Autonomous Combine Using DGPS and Machine Vision (DGPS와 기계시각을 이용한 자율주행 콤바인의 개발)

  • Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.

  • PDF

Gesture based Input Device: An All Inertial Approach

  • Chang Wook;Bang Won-Chul;Choi Eun-Seok;Yang Jing;Cho Sung-Jung;Cho Joon-Kee;Oh Jong-Koo;Kim Dong-Yoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.230-245
    • /
    • 2005
  • In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recognition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasibility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we implemented a prototype system, which is a gesture-based remote controller (Magic Wand).

Robust Pelvic Coordinate System Determination for Pose Changes in Multidetector-row Computed Tomography Images

  • Kobashi, Syoji;Fujimoto, Satoshi;Nishiyama, Takayuki;Kanzaki, Noriyuki;Fujishiro, Takaaki;Shibanuma, Nao;Kuramoto, Kei;Kurosaka, Masahiro;Hata, Yutaka
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • For developing navigation system of total hip arthroplasty (THA) and evaluating hip joint kinematics, 3-D pose position of the femur and acetabulum in the pelvic coordinate system has been quantified. The pelvic coordinate system is determined by manually indicating pelvic landmarks in multidetector-row computed tomography (MDCT) images. It includes intra- and inter-observer variability, and may result in a variability of THA operation or diagnosis. To reduce the variability of pelvic coordinate system determination, this paper proposes an automated method in MDCT images. The proposed method determines pelvic coordinate system automatically by detecting pelvic landmarks on anterior pelvic plane (APP) from MDCT images. The method calibrates pelvic pose by using silhouette images to suppress the affect of pelvic pose change. As a result of comparing with manual determination, the proposed method determined the coordinate system with a mean displacement of $2.6\;{\pm}\;1.6$ mm and a mean angle error of $0.78\;{\pm}\;0.34$ deg on 5 THA subjects. For changes of pelvic pose position within 10 deg, standard deviation of displacement was 3.7 mm, and of pose was 1.28 deg. We confirmed the proposed method was robust for pelvic pose changes.