• 제목/요약/키워드: navigation logic

검색결과 153건 처리시간 0.023초

Development of Augmented Reality Indoor Navigation System based on Enhanced A* Algorithm

  • Yao, Dexiang;Park, Dong-Won;An, Syung-Og;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4606-4623
    • /
    • 2019
  • Nowadays modern cities develop in a very rapid speed. Buildings become larger than ever and the interior structures of the buildings are even more complex. This drives a high demand for precise and accurate indoor navigation systems. Although the existing commercially available 2D indoor navigation system can help users quickly find the best path to their destination, it does not intuitively guide users to their destination. In contrast, an indoor navigation system combined with augmented reality technology can efficiently guide the user to the destination in real time. Such practical applications still have various problems like position accuracy, position drift, and calculation delay, which causes errors in the navigation route and result in navigation failure. During the navigation process, the large computation load and frequent correction of the displayed paths can be a huge burden for the terminal device. Therefore, the navigation algorithm and navigation logic need to be improved in the practical applications. This paper proposes an improved navigation algorithm and navigation logic to solve the problems, creating a more accurate and effective augmented reality indoor navigation system.

모바일 로봇의 주행 능력 향상을 위한 이중 룰 평가 구조의 퍼지 기반 자율 주행 알고리즘 (Fuzzy Logic Based Auto Navigation System Using Dual Rule Evaluation Structure for Improving Driving Ability of a Mobile Robot)

  • 박기원
    • 한국멀티미디어학회논문지
    • /
    • 제18권3호
    • /
    • pp.387-400
    • /
    • 2015
  • A fuzzy logic based mobile robot navigation system was developed to improve the driving ability without trapping inside obstacles in complex terrains, which is one of the most concerns in robot navigation in unknown terrains. The navigation system utilizes the data from ultrasonic sensors to recognize the distances from obstacles and the position information from a GPS sensor. The fuzzy navigation system has two groups of behavior rules, and the robot chooses one of them based on the information from sensors while navigating for the targets. In plain terrains the robot with the proposed algorithm uses one rule group consisting of behavior rules for avoiding obstacle, target steering, and following edge of obstacle. Once trap is detected the robot uses the other rule group consisting of behavior rules strengthened for following edge of obstacle. The output signals from navigation system control the speed of two wheels of the robot through the fuzzy logic data process. The test was conducted in the Matlab based mobile robot simulator developed in this study, and the results show that escaping ability from obstacle is improved.

A Study on Development of Video Navigation System with real-time GPS Information

  • Jang, Jin-Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.95-99
    • /
    • 2018
  • This research is related to GPS(global positioning system) enabled device navigation service and consists of two parts. The first is the logic that records the route guidance video and records GPS information in time, and the second is the logic that outputs the created video data based on real time GPS. The recording logic first determines the origin and destination, records the video from the origin to the destination and it adjusts the speed of the image in a specific area so that the user can see it easily. And insert ancillary information and advertisements that can help guide the route. In the output logic, we provide navigation services using the video and GPS data tables we created, and it receives user's GPS information in real time and corrects it based on the recent user location to reduce errors. This provides local guidance services to people who lack language skills like foreigners.

이동로봇에서 퍼지제어를 이용한 방법 (Navigation Using Fuzzy Control in Mobile Robot)

  • 권대갑;이봉구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.784-789
    • /
    • 1994
  • In the mobile robot research, monitoring the present status and self-navigating the robot in various environment are signifiant. This paper treates a navigation algorithm using a fuzzy logic and a sensor system - laser range finder. The navigation algorithm using a fuzzy logic is achieved by organizing the knoweledge base for self-navigation of mobile robot. In order that mobile robot is economically arrived the goal, the knowledge base is applied to acquire the informations of moving distance, direction, and velocity in every cycle time.

  • PDF

Fuzzy Logic Based Navigation for Multiple Mobile Robots in Indoor Environments

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.305-314
    • /
    • 2015
  • The work presented in this paper deals with a navigation problem for multiple mobile robot system in unknown indoor environments. The environment is completely unknown for all the robots and the surrounding information should be detected by the proximity sensors installed on the robots' bodies. In order to guide all the robots to move along collision-free paths and reach the goal positions, a navigation method based on the combination of a set of primary strategies has been developed. The indoor environments usually contain convex and concave obstacles. In this work, a danger judgment strategy in accordance with the sensors' data is used for avoiding small convex obstacles or moving objects which include both dynamic obstacles and other robots. For big convex obstacles or concave ones, a wall following strategy is designed for dealing with these special situations. In this paper, a state memorizing strategy is also proposed for the "infinite repetition" or "dead cycle" situations. Finally, when there is no collision risk, the robots will be guided towards the targets according to a target positioning strategy. Most of these strategies are achieved by the means of fuzzy logic controllers and uniformly applied for every robot. The simulation experiments verified that the proposed method has a positive effectiveness for the navigation problem.

최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘 (Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic)

  • 조연;이홍규
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.440-445
    • /
    • 2018
  • 본 논문은 미지 유동환경에서 다중 이동로봇들의 주행문제에 대한 연구결과이다. 여기에서 환경은 로봇에게는 알려져 있지 않기 때문에 로봇의 몸체에 부착된 근접센서들을 이용하여 주변환경들을 감지하여야 하고, 로봇이 충돌 없이 경로를 추적하여 목표지점에 도착하도록 기본 방책들을 조합한 지능주행 방법을 제안하였다. 이러한 대부분 기법들은 퍼지논리 제어기들을 이용하여 구현하였으며, 모든 로봇에 동일하게 적용하였다. 퍼지 제어기의 성능을 향상시키기 위해서 유전 알고리즘을 이용하여 퍼지 제어기의 membership function과 rules set를 진화시켰다. 모의실험 결과 제안한 방법이 주행문제에 긍정적인 결과가 있음이 증명되었다.

퍼지 로직을 이용한 지능형 네비게이션 시스템 (Intelligent Navigation System Using Fuzzy Logic)

  • 이봉우;최우경;전홍태
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.67-72
    • /
    • 2006
  • 현대인의 생활에서 자동차는 이미필수적인 것이 되었고, 자동차 기술이 발달하게 됨에 따라 더욱 더 편리한 혜택을 누리고 있다. 그러나 자동차를 좀 더 편리하게 이용하고자 다른 부가적인 시스템들을 장착하게 되었고 대표적인 것이 네비게이션이다. 현재 네비게이션 시스템은 단지 일방적인 길안내만을 해주는 기계적인 시스템에서 크게 벗어나지 못하고 있다. 본 논문에서는 퍼지 로직을 이용하여 운전자의 성향을 판단하고 그에 맞는 경로를 안내해주는 지능형 네비게이션에 대하여 제안하고자 한다. 네비게이션의 가장 중요한 목적인 빠른 경로안내에 크게 벗어나지 않는 범위 내에서 사용자의 성향에 따른 경로 안내를 해주는 미래 지향적인 네비게이션 알고리즘을 제안하고 모의 주행을 통한 제안된 알고리즘을 검증한다.

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

A Paraconsistent Robot

  • Almeida Prado, Jose Pacheco
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.92.2-92
    • /
    • 2002
  • Building autonomous robots have been a central objective of research in artificial intelligence. The development of techniques for autonomous navigation in real environment consist one of the main tendencies of the current researches about Robotics. An important problem in autonomous navigation is the necessity of dealing with a great amount of uncertainties inherent to the real environments. The paraconsistent logic has characteristics that make it become an adequate tool to solve this problem. In this work, it is proposed a technique of mapping the real world in the navigation of an autonomous robot using the paraconsistent logic.

  • PDF

Collision Avoiding Navigation of Marine Vehicles Using Fuzzy Logic

  • Joh, Joong-seon;Kwon, Kyung-Yup;Lee, Sang--Min
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.100-108
    • /
    • 2002
  • A fuzzy logic for collision avoiding navigation of marine vehicles is proposed in this paper. VFF(Virtual Force Field) method, which is used widely in the field of mobile robots, is modifiel to apply to marine vehicles. The method is named MVFF (Modified Virtual Force Field) mothod. The MVFF consists of the determination of the heading angles far track-keeping mode ($\psi_{ca}$)and collision avoidance mode ($\psi_{ca}$). The operator can choose the pattern of the track-keeping mode in the proposed algorithm. The collision avoidance algorithm can handle static and/or moving obstacles. These functons are implemented using fuzzy logic. Various simulation results verify the proposed alogorithm.