• 제목/요약/키워드: navigation augmentation

검색결과 147건 처리시간 0.024초

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구 (Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation)

  • 박재익;이은성;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.305-313
    • /
    • 2016
  • ICAO (International Civil Aviation Organization)는 GNSS (global navigation satellite system)를 이용하는 PBN (performance based navigation) 도입을 권고하였다. 우리나라도 PBN 로드맵을 수립하여 항공분야에서 GNSS를 이용할 수 있는 환경을 갖추려 시도하고 있으며, 2014년 10월 한국형 SBAS (satellite-based augmentation system) 개발을 위해 KASS (Korea augmentation satellite system) 사업을 본격적으로 착수하였다. 항공기가 GNSS를 이용하기 위해서는 수신기와 같은 항법장비를 탑재해야 한다. GNSS 항법장비는 항로, 이륙 도착, 접근 등 비행 단계에서 사용되기 때문에 장비의 규격은 다양하고 각각 별도로 그 기능과 성능을 규정하고 있다. 이 논문에서는 현재까지 제정된 항공용 GNSS 장비 표준안과 규정된 항법장비 및 인터페이스 규격에 대해 분석하여 정리하였다. KASS 개발 구축 시 비행시험 및 비행절차 개발 등 항공용 GNSS 탑재장비 등이 요구되는 곳에 활용성이 있을 것으로 기대한다.

하다마드 코드로 직교 변조된 위성항법 보강 신호의 프레임 경계 획득 성능 분석 (Analysis of Frame Boundary Detection Performance for A Satellite Navigation Augmentation Signal Orthogonally Modulated Using Hadamard Code)

  • 신장환;노재희;안재민
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.207-213
    • /
    • 2024
  • This paper examines the frame boundary detection performance for a satellite navigation augmentation signal orthogonally modulated with Hadamard code to determine the number of message preamble bits. Simulation results show that, even in weak signal environments, designing the message preamble with 32 bits is recommended for achieving stable frame boundary detection.

Accuracy Evaluation of KASS Augmented Navigation by Utilizing Commercial Receivers

  • Sung-Hyun Park;Yong-Hui Park;Jin-Ho Jeong;Jin-Mo Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.349-358
    • /
    • 2023
  • The Satellite-Based Augmentation System (SBAS) plays a significant role in the fields of aviation and navigation: it corrects signal errors of the Global Navigation Satellite System (GNSS) and provides integrity information to facilitate precise positioning. These SBAS systems have been adopted as international standards by the International Civil Aviation Organization (ICAO). In recent SBAS system design, the Minimum Operational Performance Standards (MOPS) defined by the Radio Technical Commission for Aeronautics (RTCA) must be followed. In October 2014, South Korea embarked on the development of a Korean GPS precision position correction system, referred to as Korea Augmentation Satellite System (KASS). The goal is to achieve APV-1 Standard of Service Level (SoL) service level and acquisition of CAT-1 test operating technology. The first satellite of KASS, KASS Prototype 1, was successfully launched from the Guiana Space Centre in South America on June 23, 2020. In December 2022 and June 2023, the first and second service signals of KASS were broadcasted, and full-scale KASS correction signal broadcasting is scheduled to start at the end of 2023. The aim of this study is to analyze the precision of both the GNSS system and KASS system by comparing them. KASS is also compared with Japan's Multi-functional Satellite Augmentation System (MSAS), which is available in Korea. The final objective of this work is to validate the usefulness of KASS correction navigation in the South Korean operational environment.

UML기반의 GNSS 보강시스템 성능평가용 시뮬레이터 소프트웨어 설계 (Software Design of GNSS Augmentation System Test & Evaluation Simulator Using Unified Modeling Languge)

  • 주정민;허문범;남기욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1213-1214
    • /
    • 2008
  • In this paper, we describe introduction of GNSS Test & Evaluation Facility developing in "Korean aerospace research Institute" and UML based design results of GNSS Augmentation System Test & Evaluation Simulator especially.

  • PDF

KASS Message Scheduler Design

  • Yun, Youngsun;Lee, Eunsung;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.193-202
    • /
    • 2016
  • The Korea Augmentation Satellite System (KASS), which is under development in Korea as a Satellite Based Augmentation System (SBAS) is expected to broadcast SBAS messages to air space in Korea according to the international standards defined by the International Civil Aviation Organization (ICAO) and the Radio Technical Commission for Aeronautics (RTCA). Around 13 SBAS messages are broadcast in every second to transmit augmentation information which can be applicable to a wide area in common. Each of the messages requires a different update interval and time-out according to the characteristics, purpose, and importance of transmitted information, and users should receive and combine multiple SBAS messages to calculate SBAS augmented information. Thus, a time to take acquiring first SBAS position by users differs depending on broadcasting various SBAS messages with which order and intervals. The present paper analyzes the considerations on message scheduling for broadcasting of KASS augmentation information and proposes a design of KASS message scheduler using the considerations. Compared to existing SBAS systems, which have a wide range of service area, a service area of the KASS is limited to Korea only. Thus, the numbers of ionosphere grid points and satellites to be augmented are expected to be smaller than those of existing SBAS. By reflecting this characteristic to the proposed design, shortening of broadcast interval of KASS message is verified compared to existing SBAS and a measure to increase a speed of acquisition of user navigation solution is proposed utilizing remaining message slots. The simulation result according to the proposed measure showed that the maximum broadcast interval can be reduced by up to 20% compared to that of existing SBAS, and users can acquire KASS position solution faster than existing SBAS.

우리나라 전공역 위성항법 보강시스템 구현 방안 연구 (A Study on the Implementation Scenarios of GNSS Augmentation System for Korean Airspace)

  • 배중원;김동민;지규인
    • 한국항행학회논문지
    • /
    • 제12권6호
    • /
    • pp.567-573
    • /
    • 2008
  • 본 논문에서는 우리나라 항공용 위성항법 보강시스템의 구축 방안에 대해 ICAO기준을 만족하는 전공역 위성항법 보강시스템 성능기준을 바탕으로 정량화하여 검토하였다. 국제적 동향으로부터 구축예상시점에서의 추세변화를 예측하고, 우선적으로 우리나라 여건에 적합한 구축 시나리오를 설정하여 가용성(Availability)에 대한 성능분석을 수행하였다. 국내 구축 시나리오로는 GBAS의 경우 국내 모든 공항에 구축하고, SBAS와 GRAS의 경우 5개 지역의 기준국과 2개의 중앙처리국이 필요함을 알 수 있었다. 추가적으로 SBAS의 경우는 2개의 지상 송신국(Uplink Station)과 2개의 정지위성이 소요되고, GRAS의 경우는 15개의 VDB가 소요되는 것으로 분석되었다. 전공역에 대한 각 보강시스템들에 대한 우리나라에서의 기용성 분석결과를 제시하였으며, 위성항법기술의 발전추세를 종합적으로 고려하더라도, SBAS와 GRAS의 경우는 CAT-I 수준 이상의 가용성을 보장하지 못할 것으로 판단되는 반면, ABAS의 성능은 지속적으로 개량되어 나갈 것이 확실시 되므로 대형기 중심의 우리나라 상황에서의 항공항법용 보강시스템으로서는 ABAS와 GBAS만으로 충분할 것으로 평가되었다.

  • PDF

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

KASS 활용을 위한 위성기반 보강항법시스템(SBAS) 비규격 데이터 전송 방법 연구 (SBAS Non-Standard Data Transmission Method for Korea Augmentation Satellite System Applications)

  • 박재익;이은성;허문범;남기욱
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1861-1867
    • /
    • 2016
  • 지난 2014년 한국형 SBAS (satellite based augmentation system)인 KASS (korea augmentation satellite system) 개발 구축 사업을 본격적으로 착수하였다. SBAS는 항공용으로 제정된 규격이지만, 비항공 분야에서도 활용이 가능하다. SBAS 규격으로 정해져 있는 메시지에 전송되는 정보의 종류 및 내용이 한정되어 있다. 전송되는 정보를 통해 센티미터 수준의 고정밀 위치 정보가 요구되는 분야에서 활용하기에는 정확도 수준이 낮기 때문에 추가적인 정보 제공이 필요하다. 비항공 분야에서 활용되는 정보를 항공기 항법에 영향을 주지 않으면서 안전하게 전송하기 위해서는 이에 대한 방법이 필요하다. 따라서, 이 논문에서는 항공용 SBAS 수신기에 대한 안전을 확보하면서 비항공 분야에서 활용할 수 있는 비규격 SBAS 데이터를 전송하는 방법에 대해 고찰하였다.