• Title/Summary/Keyword: naval vessel

Search Result 576, Processing Time 0.022 seconds

Optimization of a twin-skeg container vessel by parametric design and CFD simulations

  • Chen, Jingpu;Wei, Jinfang;Jiang, Wujie
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.466-474
    • /
    • 2016
  • The model tests results for the original lines of an 10000TEU container vessel show that the delivered power is higher and could not satisfy the requirement of energy saving effects and design targets. In this paper, the lines optimization of the 10,000 twin-skeg container vessel was carried out by parametric modeling and CFD simulations. At first, the CFD methods for twin-skeg hull form were validated by the comparison with the experimental results. Then more than one hundred parameters were adopted for the establishment of the fully parametric model. Based on the parametric model of the twin-skeg container vessel, the preliminary optimization was carried out by tight coupling of FRIENDSHIP-FRAMEWORK with potential flow of SHIPFLOW. Then several important parameters related to the after part of twin-skeg vessel were investigated by viscous flow computation. The final optimized variant PM11, which the total resistance was reduced by about 8.3% in model scale, is obtained within the constraints of general arrangement. And the model tests for variant PM11 was carried out in CSSRC, which shows that the resistance of optimized variant PM11 is decreased by about 8.6%.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

Control system design for vessel towing system by activating rudders of the towed vessel

  • Lee, Dong-Hun;Chakir, Soumayya;Kim, Young-Bok;Tran, Duc-Quan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.943-956
    • /
    • 2020
  • In this study, the motion control problem of the vessel towed by a towing ship (tugboat) is considered. The non-powered towed ship is dragged by the towing ship. Even though the towed ship is equipped with propulsion systems, they cannot be used at low or constant speeds due to safety issues. In narrow canals, rivers, and busy harbor areas especially, where extreme tension is required during towing operation, the course stability of the towed vessel depends on the towing ship. Therefore, the authors propose a new control strategy in which the rudder system of the towed vessel is activated to provide its maneuverability. Based on the leader-follower system configuration, a nonlinear mathematical model is derived and a back-stepping control is designed. By simulation and experiment results with a comparison study, the usefulness and effectiveness of the proposed strategy are validated.

Comparative Study on Resistance Performance of Icebreaking Cargo Vessel according to Hull Form Variation by using Synthetic Ice and Refrigerated Ice (합성얼음과 냉동얼음을 이용한 선형을 변화시킨 쇄빙상선의 저항특성 연구)

  • Lee, Seung-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Shin, Byung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.350-358
    • /
    • 2010
  • The present paper deals with the comparative study of resistance performance with refrigerated ice and synthetic ice according to the variation of hull form characteristics. The resistance test has been conducted in pack ice condition in each concentration condition. Stem angle has been chosen as main parameters for the variation of hull form characteristics. The correlation of performance between with the refrigerated ice and with the synthetic ice has been shown according to the variation for stem angles. The present study show the possibility of ice test in general towing tank with synthetic ice for the time-consuming research such as hull form optimization although that is confined in pack ice condition. The more parametric study for the properties of synthetic ice is expected to be conducted to have more close correspondence for the test results of refrigerated ice in near future.

A Case Study on the Establishment of Upper Control Limit to Detect Vessel's Main Engine Failures using Multivariate Control Chart (다변량 관리도를 활용한 선박 메인 엔진의 이상 관리 상한선 결정에 관한 연구)

  • Bae, Young-Mok;Kim, Min-Jun;Kim, Kwang-Jae;Jun, Chi-Hyuck;Byeon, Sang-Su;Park, Kae-Myoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.505-513
    • /
    • 2018
  • Main engine failures in ship operations can lead to a major damage in terms of the vessel itself and the financial cost. In this respect, monitoring of a vessel's main engine condition is crucial in ensuring the vessel's performance and reducing the maintenance cost. The collection of a huge amount of vessel operational data in the maritime industry has never been easier with the advent of advanced data collection technologies. Real-time monitoring of the condition of a vessel's main engine has a potential to create significant value in maritime industry. This study presents a case study on the establishment of upper control limit to detect vessel's main engine failures using multivariate control chart. The case study uses sample data of an ocean-going vessel operated by a major marine services company in Korea, collected in the period of 2016.05-2016.07. This study first reviews various main engine-related variables that are considered to affect the condition of the main engine, and then attempts to detect abnormalities and their patterns via multivariate control charts. This study is expected to help to enhance the vessel's availability and provide a basis for a condition-based maintenance that can support proactive management of vessel's main engine in the future.

Coordinated Virtual Inertia Control Strategy for D-PMSG Considering Frequency Regulation Ability

  • Shi, Qiaoming;Wang, Gang;Ma, Weiming;Fu, Lijun;Wu, You;Xing, Pengxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1556-1570
    • /
    • 2016
  • In the process of virtual inertia control (VIC), the frequency regulation capability of the directly-driven wind turbine with permanent-magnet synchronous generator (D-PMSG) on wind farm is related to its rotor kinetic energy and capacity margin. This paper proposes the method for assessing the D-PMSG frequency regulation capability and defining its coefficient according to the operating state of wind power generators. In addition, the calculating method of parameters in VIC is also discussed according to the principles of primary frequency regulation and inertia response of synchronous generators. Then, by introducing the capability coefficient into the proportion-differential virtual inertia control (PD-VIC) for power coordination, a coordinated virtual inertia control (C-VIC) strategy is developed, with the consideration of the difference in frequency regulation capability between wind power generators. The proposed control method can not only give full play to the frequency regulation capability of wind power generators, decrease the movements of the pitch angle control system but also bring some self-coordination capability to different wind power generators thus to avoid a secondary drop in system frequency. The simulations and experiments prove the proposed method to be effective and practicable.

The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors

  • Sun, Chi;Ai, Sheng;Hu, Liangdeng;Chen, Yulin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.146-159
    • /
    • 2015
  • Since the power capacity needed for the propulsion of large ships is very large, a multiphase AC induction propulsion mode is generally adopted to meet the higher requirements of reliability, redundancy and maintainability. This paper gives a detailed description of the development of a 20MW fifteen-phase PWM driver for advanced fifteen-phase propulsion induction motors with a special third-harmonic injection in terms of the main circuit hardware, control system design, experiments, etc. The adoption of the modular design method for the main circuit hardware design can make the enclosed mechanical structure simple and maintainable. It can also avoid the larger switch stresses caused by the multiple turn on of the IGBTs in conventional large-capacity converter systems. The use of the distributed controller design method based on a high-speed fiber-optic ring net for the control system can overcome such disadvantages as the poor reliability and long maintenance times arising from the conventional centralized controller which is designed according to point-to-point communication. Finally, the performance of the 20MW PWM driver is verified by experimentation on a new fifteen-phase induction propulsion motor.

The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

  • Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1096-1110
    • /
    • 2014
  • Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

Experimental Study of Excessive Yaw Motion of Turret Moored Floating Body (터렛 계류된 부유체의 과대 선수동요에 관한 실험 연구)

  • Cho, Seok-Kyu;Sung, Hong-Gun;Hong, Jang-Pyo;Choi, Hang-Shoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Excessive yaw motion of a turret moored vessel was examined in this paper. The vessel was moored by an internal turret and catenary mooring lines. The experiments were conducted in regular waves. Turret moored vessel can oscillate from side to side or move to one particular direction, and eventually exhibit large yaw motion. The results showed that the excessive yaw occured for specific condition, ratio of wave lengths and vessel length. It was found that turret moored floating vessel was unstable for regular wave period from 14 to 18 sec and excessive yaw occurred to maximum 50 deg. The time series, trajectory, phase plot and qualitative analysis are performed. The analysis showed that the results of experiments agreed with the that of analytic method and the excessive yaw could be predicted by the stability analysis.