• Title/Summary/Keyword: naval vessel

Search Result 576, Processing Time 0.02 seconds

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Ship Stability Calculation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 선박 복원성 계산)

  • Lee, Jae-Seok;Chung, Young-Gu;Kim, Jee-Hun;Park, Ji-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.459-468
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sank to the bottom of the Bering Sea. The tragic accident was attributed to rough sea weather after a fishing operation in the Bering Sea, and led to the death or loss of many crewmen. In this study, the ship stability calculation was carried out using KST-SHIP (ship calculation system of KST), considering the free surface effect and fish catch arrangement according to the progress of its sinking accident, and stability after flooding was analyzed. The calculation results obtained using KST-SHIP were verified by comparing them to intact stability calculation sheet of the accident ship under the full load departure condition, and intact stability according to displacement from the departure of accident ship up to the moment of the accident was calculated and analyzed. The stability after flooding was also calculated and analyzed according to the progress during its sinking accident.

A Study on the Development of Low Speed Twin-Hull Form for Seabed Organic Sediment Collection (해저 유기퇴적물 수거를 위한 저속 쌍동형 선형개발 연구)

  • Park, Je-woong;Kim, Do-jung;Oh, Woo-jun;Jeong, Uh-cheul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 2016
  • In this study, conceptual design of the fore-body hull form of catamaran type dredging vessel was performed that can effectively remove the contaminated sediments in coastal seabed. The hull form was simpled for the easy hull construction and the resistance performance was investigated to find out the effect of hull form parameters between variation of waterline and angle of entrance, etc. The relation between resistance performance and characteristics of free surface flows according to variation of bow forms was investigated by model testing in the circulating water channel and using Ansys CFX. The improvement of ship resistance performance to the wave resistance decrease due to improved wave pattern has been verified according to move the stem and the volume of the shoulder to the fore part of the vessel.

Analysis the dynamic factors on the capsize of O-Ryong 501 (제501오룡호 전복사고의 역학적 요인 분석)

  • KIM, Yong-Jig;KANG, Il-Kwon;HAM, Sang-Jun;PARK, Chi-Wan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • A tragic disaster happened by capsizing O-Ryong 501 trawler at Western Bering Sea in 1st, Dec. 2014. The disaster was caused by the severe weather and the long deferred escape from the storm in fully developed high sea. Lots of sea water from poop deck rushed into the fish ponder with fishes all together after hauling net and then remove the fishes from codend. The vessel became to incline to the one side caused by the weight and the free surface effect of flood sea waters and fishes at initial stage. In spite of crews all effort to discharge the waters, but the work was not achieved successfully. For the worse thing, the order of abandon ship was issued too late. After all, the ship capsized and sank, then almost crews became to the victims of the casualty including captain. In this paper, author carried out restrictively the calculation of dynamic factors influenced on the disaster including the weather condition and effects of the flood sea waters, and found out that the most important causes of the disaster were the decrease of stabilities, GM was decreased from 0.9m to 0.08 m, and the high waves which led to the vessel disaster.

Effects of Opening Condition of the Fore Body on the Resistance and Self-Propulsion Performance of a Ship (일반상선의 선수 개구부가 저항 및 자항성능에 미치는 영향)

  • Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.78-85
    • /
    • 2014
  • LNG-RV has the additional equipments that enable to re-gastify liquefied LNG in LNG carrier. This vessel has Submerged Turret Loading(STL) system which transports gas through submarine terminal. When LNG-RV is operating at sea, the opening condition is formed by detaching STL equipment from a vessel. The primary objective of the current work is to estimate accurate speed loss for the opening condition of the LNG-RV employing numerical calculations and model tests. In the model tests, resistance and self-propulsion tests are carried out for the bare-hull and the opening condition without STL. In addition to these, flow visualization utilizing tuft is used to make the flow patterns visible, in order to get a qualitative or quantitative information for inner part in case of detaching the STL.

A study for roll damping performance of a platform supply vessel with or without bilge keel using CFD (전산유체역학을 이용한 해양작업지원선의 빌지킬 유무에 따른 횡동요 성능에 관한 연구)

  • Seok, Jun;Kim, Sung-Yong;Yang, Young-Jun;Jin, Song-Han;Park, Jong-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.791-798
    • /
    • 2016
  • In this study, numerical simulations on the effects of bilge keel on roll motion were conducted. The numerical simulations were performed on a 110 m class PSV using the commercial viscous flow analysis software Star-CCM+. Before conducting the study on the 110 m class PSV, an additional simulation of DTMB 5512 was performed and compared with the experimental results to validate the feasibility of the numerical simulation. In the simulation on PSV, a nondimensional damping coefficient was calculated using a free roll decay simulation, and the response amplitude operator (RAO) for the roll motion was calculated with a nondimensional damping coefficient at two conditions (with/without bilge keel).

Prediction for Underwater Static Magnetic Field Signature Generated by Hull and Internal Structure for Ferromagnetic Ship (강자성 함정 선체 및 내부 장비에 의한 수중 정자기장 신호 예측)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Ju, Hye-Sun;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.167-173
    • /
    • 2011
  • Underwater static magnetic field signature for the naval ship has been widely used as the detonating source of the influence mine system because it is possible to make an accurate target detection in the near field although the magnetic field falls off relatively fast with distance in comparison with the underwater radiated noise signal. In this paper, we describe the prediction results about the underwater static magnetic field by the ferromagnetic hull, the internal structures and the main on-board equipment for the target vessel using the commercial FEM software. Also we analyze the degaussing effectiveness for the target vessel through the degaussing coils arrangement.

Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

  • Kujala, Pentti;Korgesaar, Mihkel;Kamarainen, Jorma
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.376-384
    • /
    • 2018
  • Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code.

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF