• 제목/요약/키워드: naturally cooling

검색결과 36건 처리시간 0.025초

Magnetic field detwinning in FeTe

  • Kim, Younsik;Huh, Soonsang;Kim, Jonghyuk;Choi, Youngjae;Kim, Changyoung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.6-8
    • /
    • 2019
  • Iron-based superconductors (IBSs) possess nematic phases in which rotational symmetry of the electronic structure is spontaneously broken. This novel phase has attracted much attention as it is believed to be closely linked to the superconductivity. However, observation of the symmetry broken phase by using a macroscopic experimental tool is a hard task because of naturally formed twin domains. Here, we report on a novel detwinning method by using a magnetic field on FeTe single crystal. Detwinning effect was measured by resistivity anisotropy using the Montgomery method. Our results show that FeTe was detwinned at 2T, which is a relatively weak field compared to the previously reported result. Furthermore, detwinning effect is retained even when the field is turned off after field cooling, making it an external stimulation-free detwinning method.

이류체 포그 냉방시스템의 제어알고리즘 개발 (Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System)

  • 남상운;김영식;성인모
    • 생물환경조절학회지
    • /
    • 제22권2호
    • /
    • pp.138-145
    • /
    • 2013
  • 최근 국내에 많이 보급되고 있는 이류체 포그 냉방시스템의 효율적인 제어알고리즘을 개발하기 위하여 다양한 조건의 분무사이클을 설정하여 토마토재배 온실에서 냉방실험을 실시하였다. 냉방효과는 평균 $1.2{\sim}4.0^{\circ}C$를 보였고, 냉방효율은 평균 8.2~32.9%로 나타났다. 분무간격에 따른 실험에서 90초 분무사이클의 냉방효율이 가장 높았고, 대체로 분무시간이 길수록, 정지시간이 짧을수록 냉방효율이 높게 나타났다. 이류체 포그시스템의 분무량이 증가할수록 냉방효율이 높아지는 경향을 찾을 수 있었다. 그러나 분무량을 증가시키더라도 내부공기가 포화상태에 가까워지면 더 이상 증발이 일어나지 않으므로 내부공기가 포화상태에 도달하기 전까지 분무량을 증대시키는 방법으로 냉방효율을 높일 수 있을 것으로 판단된다. 냉방효율이 증가함에 따라 실내공기의 포차는 감소하였고 실내외 절대습도 차이는 증가하는 경향을 보였다. 포그의 증발량이 증가할수록 실내와 실외의 절대습도 차이는 커지고, 이에 따라 환기에 의한 수증기 배출이 잘 되어 다시 증발효율을 상승시키므로 냉방효율이 높아지는 순환구조를 갖게 되는 것으로 판단된다. 분무시간과 정지시간에 따른 실내공기의 포차변화를 회귀분석한 결과 $10g{\cdot}kg^{-1}$의 포차 변화에 필요한 분무시간은 120초, 정지시간은 60초로 나타났다. 그러나 온도의 진동폭을 줄이고 냉방효율을 높이기 위해서는 포차의 변동범위를 $5g{\cdot}kg^{-1}$으로 설정하여 60초 분무, 30초 정지가 더 적당할 것으로 판단된다. 이류체 포그시스템의 제어방식을 컴퓨터 제어시스템과 현재 보급되고 있는 간편제어시스템으로 분류하여 제어알고리즘을 유도하였다. 자연환기 온실에서 간편 제어시스템을 사용한다면 분무사이클을 60초 on, 30초 off로 설정하고 온도하한은 30~$30{\sim}32^{\circ}C$, 습도상한은 85~90%로 설정할 것을 제안한다.

자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형 (Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach)

  • 홍세운;이인복
    • 생물환경조절학회지
    • /
    • 제23권3호
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.

RF 스퍼터를 이용하여 미리 가열된 기판을 냉각하며 증착한 ZnO 박막의 c축 배향성 향상에 관한 연구 (Improvement of c-axis orientation of ZnO thin film prepared on pre-heated substrate with cooling during RF sputter deposition)

  • 박성현;이순범;신영화;이능헌;지승한;권상직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.24-25
    • /
    • 2006
  • In this paper, ZnO thin films were prepared on p-Si(100) by RF magnetron sputtering. Before the depostion, the substrates were pre-heated to 500, 400, 300, $200^{\circ}C$ or not. During the deposition, the substrates were cooled down naturally or kept and then the films were investigated by XRD(X-ray diffraction) and SEM (scanning micro scope). It is showed the most outstanding result that the film was prepared on the substrate were cooled from $400^{\circ}C$. When the substrate was cooled from a certain temperature during deposition, it could be improve the c-axis orientation and useful for application of SAW(surface acoustic wave) filter and FBAR(film bulk acoustic wave resonator) device.

  • PDF

Impact of standard construction specification on thermal comfort in UK dwellings

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • 제3권3호
    • /
    • pp.253-281
    • /
    • 2014
  • The quest for enhanced thermal comfort for dwellings encompasses the holistic utilization of improved building fabric, impact of weather variation and amongst passive cooling design consideration the provision of appropriate ventilation and shading strategy. Whilst thermal comfort is prime to dwellings considerations, limited research has been done in this area with the attention focused mostly on non-dwellings. This paper examines the current and future thermal comfort implications of four different standard construction specifications which show a progressive increase in thermal mass and airtightness and is underpinned by the newly developed CIBSE adaptive thermal comfort method for assessing the risk of overheating in naturally ventilated dwellings. Interactive investigation on the impact of building fabric variation, natural ventilation scenarios, external shading and varying occupants' characteristics to analyse dwellings thermal comfort based on non-heating season of current and future weather patterns of London and Birmingham is conducted. The overheating analysis focus on the whole building and individual zones. The findings from the thermal analysis simulation are illustrated graphically coupled with statistical analysis of data collected from the simulation. The results indicate that, judicious integrated approach of improved design options could substantially reduce the operating temperatures in dwellings and enhance thermal comfort.

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends)

  • 권재성;김범수;양정현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구 (A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF

IMPLICATION OF STELLAR PROPER MOTION OBSERVATIONS ON RADIO EMISSION OF SAGITTARIUS A

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.81-87
    • /
    • 2003
  • It is suggested that a flying-by star in a hot accretion disk may cool the hot accretion disk by the Comptonization of the stellar emission. Such a stellar cooling can be observed in the radio frequency regime since synchrotron luminosity depends strongly on the electron temperature of the accretion flow. If a bright star orbiting around the supermassive black hole cools the hot disk, one should expect a quasi-periodic modulation in radio, or even possible an anti-correlation of luminosities in radio and X-rays. Recently, the unprecedentedly accurate infrared imaging of the Sagittarius A$\ast$ for about ten years enables us to resolve stars around it and thus determine orbital parameters of the currently closest star S2. We explore the possibility of using such kind of observation to distinguish two quite different physical models for the central engine of the Sagittarius A$\ast$, that is, a hot accretion disk model and a jet model. We have attempted to estimate the observables using the observed parameters of the star S2. The relative difference in the electron temperature is a few parts of a thousand at the epoch when the star S2 is near at the pericenter. The relative radio luminosity difference with and without the stellar cooling is also small of order $10^{-4}$, particularly even when the star S2 is near at the pericenter. On the basis of our findings we tentatively conclude that even the currently closest pass of the star S2 is insufficiently close enough to meaningfully constrain the nature of the Sagittarius A$\ast$ and distinguish two competing models. This implies that even though Bower et al. (2002)have found no periodic radio flux variations in their data set from 1981 to 1998, which is naturally expected from the presence of a hot disk, a hot disk model cannot be conclusively ruled out. This is simply because the energy bands they have studied are too high to observe the effect of the star S2 even if it indeed interacts with the hot disk. In other words, even if there is a hot accretion disk the star like S2 has imprints in the frequency range at v $\le$ 100 MHz.

청주시 용도지역별 가로수의 생리.생태학적 특성에 관한 연구 -Ginkgo biloba와 Platanus orientalis를 중심으로- (Physio-Ecological Characteristics of Roadside Tree by Difference under Zoning of Urban Districts in Cheong-ju City -Focused on the Ginkgo biloba and Platanus orientalis-)

  • 인형민;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.229-236
    • /
    • 2010
  • As air pollution has emerged as one of the most pressing urban environmental concerns, many studies have investigated the influence of air pollutants(ex: $O^3$, $NO^2$, $SO^2$, Acid rain, etc.) on roadside trees and urban grove. In Korea, population density started to increase since the industrialization. Since dense population aggravates our living conditions, it's very important for us to preserve and keep a lively and refreshing nature in order to live with green nature in harmony under the current artificial environment-dominating world. In metropolitan cities, the production of pollutants increases in proportion to population growth. The vehicle exhaust gas and air pollutants from cooling and heating systems have been the major causes of acid rain. Furthermore, tire particles which are naturally produced by tire wearing on roads and other toxic substances in exhaust gas have caused a problem in human health directly and indirectly. In fact, a lot of studies have analyzed air pollution, roadside trees and plants in Korea. However, they are mostly limited to covering the influence of air pollution on the growth of plants. No paper has clearly explained why air pollution-resistant or-vulnerable species has shown different reactions yet. Even though a lot of urban roadside trees have died or stopped to grow from time to time, this kind of problem has not been properly examined. This paper is aimed to comparatively analyze physio-ecological characteristic such as photosynthesis, chlorophyll contents, soil volume water figure out their relationship with environmental factors against the expanding roadside trees in Cheong-ju, and provide basic data for management of roadside trees and elaboration of urban environment preservation policies.