• Title/Summary/Keyword: natural wind

Search Result 864, Processing Time 0.029 seconds

The effects of blade-pitch control on the performance of semi-submersible-type floating offshore wind turbines

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.79-99
    • /
    • 2018
  • The effects of BPC (blade pitch control) on FOWT (floating offshore wind turbine) motions and generated power are investigated by using a fully-coupled turbine-floater-mooring simulation program. In this regard, two example FOWTs, OC4-5MW semi-submersible FOWT and KRISO four-3MW-units FOWT, are selected since the numerical simulations of those two FOWTs have been verified against experiments in authors' previous studies. Various simulations are performed changing BPC natural frequency (BPCNF), BPC damping ratio (BPCDR), and wind speeds. Through the numerical simulations, it was demonstrated that negative damping can happen for platform pitch motions and its influences are affected by BPCNF, BPCDR, and wind speeds. If BPCNF is significantly larger than platform-pitch natural frequency, the pitch resonance can be very serious due to the BPC-induced negative-damping effects, which should be avoided in the FOWT design. If wind speed is significantly higher than the rated wind velocity, the negative damping effects start to become reduced. Other important findings are also given through systematic sensitivity investigations.

Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method (유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정)

  • Kim, Sang-Bum;Lee, Wan-Soo;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

Estimating the maximum pounding force for steel tall buildings in proximity subjected to wind

  • Tristen Brown;Ahmed Elshaer;Anas Issa
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.47-69
    • /
    • 2024
  • Pounding of structures may result in considerable damages, to the extent of total failure during severe lateral loading events (e.g., earthquakes and wind). With the new generation of tall buildings in densely occupied locations, wind-induced pounding becomes of higher risk due to such structures' large deflections. This paper aims to develop mathematical formulations to determine the maximum pounding force when two adjacent structures come into contact. The study will first investigate wind-induced pounding forces of two equal-height structures with similar dynamic properties. The wind loads will be extracted from the Large Eddy Simulation models and applied to a Finite Element Method model to determine deflections and pounding forces. A Genetic Algorithm is lastly utilized to optimize fitting parameters used to correlate the maximum pounding force to the governing structural parameters. The results of the wind-induced pounding show that structures with a higher natural frequency will produce lower maximum pounding forces than those of the same structure with a lower natural frequency. In addition, taller structures are more susceptible to stronger pounding forces at closer separation distances. It was also found that the complexity of the mathematical formula from optimization depends on achieving a more accurate mapping for the trained database.

Study on Heat and Smoke Behavior Due to the Natural Wind and the Forced Smoke Ventilation for the Fire in an Underground Subway Station (지하역사에서 화재발생시 자연풍 및 강제배연의 유무에 따른 열 및 연기거동 특성 연구)

  • Chang Hee-Chul;Kim Tae-Kuk;Park Won-Hee;Kim Dong-Hyeon
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.80-86
    • /
    • 2005
  • In this study effects of the natural wind and the forced smoke ejection by operating the exhaust fan are studied numerically to examine the flow characteristics of the smoke and heat generated from a fire on the platform of an underground subway station. Three different situations, including 1) the case with no natural wind and no exhaust fan operation, 2) the case with natural wind but no exhaust fan operation and 3) the case with no natural wind but exhaust fan operation, are considered for the numerical analyses. The numerical results show that the natural wind causes a rapid spread of the fire along the tunnel resulting in rapid spread of the smoke and heat over the platform which affects the escape. The operation of the exhaust fan also results in the rapid spread of smoke and heat over the platform, but the time required for reaching the safe escaping height of the smoke layer with the exhaust fan operation is much longer than that without the exhaust fan operation. The numerical results also show that the required capacity of the exhaust fan becomes larger when the effect of the natural wind is included.

Stability Analysis on Solar Tracker Due to Wind (바람에 기인하는 태양광추적구조물의 안정성 해석)

  • Kim, Yong-Woo;Lee, Seoung Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.216-222
    • /
    • 2013
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as heavy fall of snow and high speed wind. Therefore, the solar tracker structure should be designed to have sufficient static and dynamic stiffness against such environmental conditions. In this paper, eigenvalue analysis of the solar tracker is carried out by varying the pose of the solar panel and unsteady flow analysis around a single tracker or multi-trackers arranged in a line is performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate whether there exists an instability of resonance due to vortex shedding. Finite element eigenvalue analysis shows that natural frequencies and modes are almost not influenced by the pose of the solar panel and the finite element flow analysis shows that there does not exist periodic vortex shedding due to the flow around single tracker or multiple solar trackers in a line.

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

Improvement of Natural Ventilation in a Factory Building Using a Velocity Field Measurement Technique (PIV 속도장 측정기법을 이용한 공장 실내환기 개선방안 연구)

  • Im, Hui-Chang;Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1427-1435
    • /
    • 2001
  • Air movement in wokplaces, whether resulting from a forced ventilation system or naturally occurring airflow, has a significant impact on occupational health. In a huge shipbuilding factory building, typical harmful factors such as fume or vaporized gas from welding and cutting of steel plates, and dusts from grinding give unpleasant feeling. From field data survey, the yearly dominant, wind directions for the shipbuilding factory building tested were northwest, northeast and southeast Among the three wind directions, the ventilation improvement was the worst for the northeastern wind. This study was focused on location of the opening vents in order to utilize the natural ventilation effectively. Instantaneous velocity fields inside the 1/1000 scale-down factory building model were measured using a 2-frame PIV system. The factory building model was embedded in an atmospheric boundary layer simulated in a wind tunnel. The modified vents improve the internal Ventilation flow with increasing the flow speed more than two times, compared with that of present vents.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

The Influence of Natural Smoke Ventilators and Wind Velocities on the Stack effect in High-rise Buildings (배연창 및 외기풍속이 초고층 건축물의 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyu;Yeo, Yong-Ju;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2008
  • The performance of natural smoke ventilators in High-rise buildings was analyzed by investigating the stack effect depending on the wind velocities using CONTAMW tool. The results showed that the opening of smoke ventilators can influence on the stack effect in the building thus moving the position of the neutral plane toward the opened smoke ventilators. The outside wind velocities can move up the neutral plane toward the top of the building thus increasing pressure differentials at the bottom of the building. The smoke ventilators can maintain its normal performance without outside wind, however, strong outside wind can prevent natural smoke exhaust due to the infiltration of outside air at the ventilators.

Lateral Stiffness and Natural Period Evaluation of Flat Plate Tall Buildings for Wind Design (내풍설계를 위한 초고층 무량판 건축물의 횡강성 및 고유주기 산정)

  • Park, Je-Woo;Kim, Hong-Jin;Jo, Ji-Seong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • Wind-induced vibration is one of the important structural design factors for serviceability of tall buildings. In order to evaluate the reliable wind-loads and wind induced-vibration, it is necessary to obtain the exact natural period of buildings. The discrepancy in the natural period estimation often results in the overestimation of wind loads. In this study, the effectiveness of lateral stiffness estimation method for tall buildings with flat plate system is evaluated. For this purposed, the results of finite element analysis of three recently constructed buildings are compared with those obtained from field measurement. For the analysis, factors affecting on the lateral resistance such as cracked stiffness of vertical members, elastic modulus of concrete, effective slab width, and cracked stiffness of link beam are considered. Form the results, it is found that the use of non-cracked stiffness and application of dynamic modulus of elasticity rather than initial secant modulus yields closer analysis result to the as-built period.