• 제목/요약/키워드: natural vibration

검색결과 3,257건 처리시간 0.027초

수명예측 방법에 따른 마이크로스위치의 수명분석 및 신뢰도 예측 (Life Analysis and Reliability Prediction of Micro Switches based on Life Prediction Method)

  • 지정건;신건영;이덕규;손영진;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.14-21
    • /
    • 2011
  • Reliability means that a product maintains its initial quality and performance at certain period of time(time, distance, cycle etc) under given condition without failure. Given conditions include both environmental condition and operating condition. Environmental condition means common natural environment such as temperature, humidity, vibration, and working condition means artificial environment such as voltage, current load, install place, hours of use, which occurs during using the product. In the field of railway vehicles, although components of railway vehicles with reliability are the trend of mandatory as persisting period of railway vehicles is extended, using components of railway vehicles is insufficient for the practical reliability assessment. but the meaning of the first railway operating agnecy to acquire the parts in the field, the data suggest the reliability of products if you can and can show the reliability of modular units and modular units can provide the reliability of if you can present reliability of the entire system is thought to be here. In this study, lifespan of micro-switch for master controller is analyzed and prediction is performed based on its field data considering the special circumstances of railway vehicles operating agency, such as a large number of trains operates on the same line.

  • PDF

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Identification of modal damping ratios of structures with closely spaced modal frequencies

  • Chen, J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.417-434
    • /
    • 2002
  • This paper explores the possibility of using a combination of the empirical mode decomposition (EMD) and the Hilbert transform (HT), termed the Hilbert-Huang transform (HHT) method, to identify the modal damping ratios of the structure with closely spaced modal frequencies. The principle of the HHT method and the procedure of using the HHT method for modal damping ratio identification are briefly introduced first. The dynamic response of a two-degrees-of-freedom (2DOF) system under an impact load is then computed for a wide range of dynamic properties from well-separated modal frequencies to very closely spaced modal frequencies. The natural frequencies and modal damping ratios identified by the HHT method are compared with the theoretical values and those identified using the fast Fourier transform (FFT) method. The results show that the HHT method is superior to the FFT method in the identification of modal damping ratios of the structure with closely spaced modes of vibration. Finally, a 36-storey shear building with a 4-storey light appendage, having closely spaced modal frequencies and subjected to an ambient ground motion, is analyzed. The modal damping ratios identified by the HHT method in conjunction with the random decrement technique (RDT) are much better than those obtained by the FFT method. The HHT method performing in the frequency-time domain seems to be a promising tool for system identification of civil engineering structures.

ANSYS를 활용한 공작기계 직결주축 시스템의 1차원 유한요소해석 자동화 (Automation of One-Dimensional Finite Element Analysis of a Direct-Connection Spindle System of Machine Tools Using ANSYS)

  • 최진우
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.127-133
    • /
    • 2015
  • In this study, an analytical model was developed for one-dimensional finite element analysis (1D FEA) of a spindle system of machine tools and then implemented to automate the FEA as a tool. FEA, with its vibration characteristics such as natural frequencies and modes, was performed using the universal FEA software ANSYS. VBA of EXCEL was used to provide the programming environment for its implementation. This enabled graphic user interfaces (GUIs) to be developed to allow interactions of users with the tool and, in addition, an EXCEL spreadsheet to be linked with the tool for data arrangement. The language of ANSYS was used to develop a code to perform the FEA. It generates an analytical model of the spindle system based on the information at the GUIs and subsequently performs the FEA based on the model. Automation helps identify the near-optimal design of the spindle system with minimum time and efforts.

유체에 잠긴 다공 원통형 쉘의 자유진동해석 (Free Vibration Analysis of Perforated Shell Submerged in Fluid)

  • 정명조;조종철
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.247-258
    • /
    • 2006
  • 물에 잠긴 다공 원통형 쉘의 경우 물에 잠긴 상태로 유한요소해석을 하기에는 거의 불가능하므로 등가물성치를 사용하여야 한다. 다공 평판의 경우 이에 대한 등가물성치를 ASME 코드에서 제시하고 있지만, 다공 원통형 쉘의 등가물성치에 대한 연구는 아직까지 수행된 적이 없다. 따라서 본 연구에서는 유한요소해석을 이용하여 다공 원통형 쉘의 동적 해석에 이용할 수 있는 등가물성치를 제안하였고 그 타당성을 검증하였다.

타원형 띠기초의 자유진동 해석 (Free Vibration Analysis of Elliptic Strip Foundation)

  • 이태은;강희종;김권식;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.548-555
    • /
    • 2005
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the elliptic strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such sap foundations we derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of free-free end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF

보정된 부가질량을 이용한 댐 수문의 지진해석 (Earthquake Analysis of Dam Floodgate Using Calibrated Added Mass)

  • 배정주;김호승;김용곤;이지호
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.31-40
    • /
    • 2009
  • 본 논문에서는 현장 강제진동실험에서 측정된 수문의 고유진동수를 수치 시뮬레이션을 통해 얻은 대응 값과 비교하는 과정을 반복하여 수문의 부가질량을 보정하는 방법을 설명하였다. 보정된 부가질량이 수문의 내진성능평가에 미치는 영향을 평가하기 위하여 현장 강제진동실험이 행해진 수문을 대상으로 지진해석을 수행하였으며, Westergaard 부가질량을 사용한 수문의 수치모형이 실측 자료로 보정된 부가질량을 사용한 경우보다 최대 지진력과 최대 변위에서 상대적으로 큰 값을 산출하는 결과를 보여주었다.

Dynamic response of functionally graded annular/circular plate in contact with bounded fluid under harmonic load

  • Yousefzadeh, Sh.;Jafari, A.A.;Mohammadzadeh, A.;Najafi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.523-533
    • /
    • 2018
  • In this study, the dynamic response of a functionally graded material (FGM) circular plate in contact with incompressible fluid under the harmonic load is investigated. Analysis of the plate is based on First-order Shear Deformation Plate Theory (FSDT). The governing equation of the oscillatory behavior of the fluid is obtained by solving Laplace equation and satisfying its boundary conditions. A new set of admissible functions, which satisfy both geometrical and natural boundary conditions, are developed for the free vibration analysis of moderately thick circular plate. The Chebyshev-Ritz Method is employed together with this set of admissible functions to determine the vibrational behaviors. The modal superposition approach is used to determine the dynamic response of the plate exposed to harmonic loading. Numerical results of the force vibrations and the effects of the different geometrical parameters on the dynamic response of the plate are investigated. Finally, the results of this research in the limit case are compared and validated with the results of other researches and finite element model (FEM).

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.